
Handouts - Download and Read!

http://www.chem.tamu.edu/rgroup/hughbanks/
courses/673/handouts/handouts.html 

★ translation_groups2.pdf 
★ translation_groups3.pdf 
★ transitions.pdf   Provides background for 

selection rules.  You do not need to 
memorize the derivation, but results in 
“boxes” are important to know!

Complex Numbers; 
Digression  

★ Cartesian Forms 
★ The complex plane, vector forms 
★ polar representation of complex 

numbers and vectors

Cyclic Groups

Consider CN, the cyclic group consisting of 
the operations CN , CN

2
 , CN

3 , ..., CN
N-1 , CN

N 

= E.  Because all the operations are in the 
different classes, there are N irreducible 
representations and they are all one 
dimensional.  This means that the 
characters are the same as the matrices - 
just numbers.

Character Tables for Cyclic Groups

  

ε = exp(2πi / N)

CN CN2 CN3 ! CNN−1 CNN = E
Γ1 ε ε 2 ε3 ! εN−1 εN
Γ2 ε2 ε 4 ε 6 ! ε2N−2 ε 2N
Γ3 ε3 ε6 ε 9 ! ε 3N−3 ε 3N
" " " " # " "

ΓN−1 εN−1 ε 2N −2 ε3N −3 ! ε −2 εN (N−1)

ΓN εN ε2N ε3N ! ε −1 εN2



Example

★ Use the C6 group to find the characters of the 
reducible representation obtained using the 6 
carbon pπ orbitals of benzene as a basis — 
then find the irred. reps. spanned by this rep. 

★ Draw the complex coefficients of the orbitals 
for each irreducible representation. 

★ Draw real counterparts of these orbitals.

    

ε = exp(2π i / 6)

C6 C6 C6
2 C6

3 C6
4 C6

5 CN
6 = E

Γ1 ε ε 2 ε3 ε 4 ε5 ε6

Γ2 ε 2 ε 4 ε6 ε8 ε10 ε12

Γ3 ε3 ε6 ε9 ε12 ε15 ε18

Γ4 ε 4 ε8 ε12 ε16 ε 20 ε 24

Γ5 ε5 ε10 ε15 ε 20 ε 25 ε30

Γ6 ε6 ε12 ε18 ε 24 ε30 ε36

C6 E C6 C6
2 C6

3 C6
4 CN

5

Γ0 = Γ6 1 1 1 1 1 1
Γ1 1 ε ε 2 ε3 ε 4 ε5

Γ2 1 ε 2 ε 4 ε6 ε8 ε10

Γ3 1 ε3 ε6 ε9 ε12 ε15

Γ4 1 ε 4 ε8 ε12 ε16 ε 20

Γ5 1 ε5 ε10 ε15 ε 20 ε 25

C6 Group

  c2ε = 1   ⇒   c2 = ε* = ε−1

  c2 = ε−1 = c3ε     ⇒   c3 = ε−2

    

ε = exp(2π i / 6)
C6 E C6 C6

2 C6
3 C6

4 C6
5

Γ0 = Γ6 1 1 1 1 1 1
Γ1 1 ε ε 2 ε3 ε 4 ε5

Γ2 1 ε 2 ε 4 ε6 ε8 ε10

Γ3 1 ε3 ε6 ε9 ε12 ε15

Γ4 1 ε 4 ε8 ε12 ε16 ε 20

Γ5 1 ε5 ε10 ε15 ε 20 ε 25

Let ψ1 be a basis function that belongs to Γ1, then 
C6ψ1 = εψ1,  C6

2ψ1 = ε 2ψ1,  ! , C6
5ψ1 = ε5ψ1

Write ψ1 as a combination of pπ  basis functions, 
ψ1 = φ1 + c2φ2 + c3φ3 + c4φ4 + c5φ5 + c6φ6

C6ψ1 = C6 φ1 + c2φ2 + c3φ3 + c4φ4 + c5φ5 + c6φ6( ) = εψ1

φ2 + c2φ3 + c3φ4 + c4φ5 + c5φ6 + c6φ1 = εφ1 + c2εφ2 + c3εφ3 + c4εφ4 + c5εφ5 + c6εφ6

ε = exp(2π i / 6)
C6 E C6 C6

2 C6
3 C6

4 C6
5

Γ0 = Γ6 1 1 1 1 1 1
Γ1 = E1 1 ε ε 2 −1 −ε −ε 2

Γ2 = E2 1 ε 2 −ε 1 ε 2 −ε
Γ3 = B 1 −1 1 −1 1 −1
Γ4 = E2 1 ε 2 * −ε * 1 ε 2 * −ε *
Γ5 = E1 1 ε * ε 2 * −1 −ε * −ε 2 *

Make the identification with chaacter tables in some books: 
ε 3 = ε 9 = ε15 = ε 21 = −1,  ε 6 = ε12 = ε18 = ε 24 = 1



Translation Group (1-dimension)

★ The one-dimensional translation group is just 
a particular cyclic group of order N.  The 
trans-polyacetylene below is an example of a 
system with translational symmetry.
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1-D Translation Group Char. Table

This has the same appearance as the CN 
group’s character table:

    

ε = exp(2π i / N )
t t2 t3 ! tN−1 tN = E

Γ1 ε ε 2 ε3 ! ε N −1 ε N

Γ2 ε 2 ε 4 ε6 ! ε 2N −2 ε 2N

Γ3 ε3 ε6 ε9 ! ε3N −3 ε3N

" " " " # " "
ΓN −1 ε N −1 ε 2N −2 ε3N −3 ! ε ( N −1)2

ε N ( N −1)

ΓN ε N ε 2N ε3N ! ε N ( N −1) ε N 2

1-D Translation Group Char. 
Table - Rearranged

    

ε = exp(2π i / N )

TN E t t2 ! tN−2 tN−1

" " " " ! " "
Γ−N 2 1 −1 1 ! 1 −1
Γ−N 2+1 1 −ε ε 2 ! ε−2 −ε−1

" " " " ! " "
Γ−1 1 ε−1 ε−2 ! ε−( N −2) ε−( N −1)

Γ0 1 1 1 ! 1 1
Γ1 1 ε1 ε 2 ! ε N −2 ε N −1

" " " " ! " "
ΓN 2 1 −1 1 ! 1 −1
ΓN 2+1 1 −ε ε 2 ! ε−2 −ε−1

" " " " " " "

Character Table for TN, rewritten

★ All the IRs of TN have the form:

We make the substitution  k = 1
a

⎛
⎝⎜

⎞
⎠⎟
×

j
N

⎛
⎝⎜

⎞
⎠⎟

;   where  − 1
2a

< k ≤ 1
2a

 

ε = e2π i N t t2 t3 ! tN−1 tN = E
Γ j ε j ε 2 j ε 3 j ! ε− j 1

−N 2 +1 < j < N 2

 

Making the substitution, ε j = (e2π i N ) j = e2π ika .  This is rewritten to yield

E t t2 t3 ! tN−1

Γ(k) 1 e2π i(k •a) e2π i(k •2a) e2π i(k •3a) ! e−2π i(k •a)



1-D Energy Level Diagram 1-D s-band Dispersion curve

Examples

★ Find the characters of the reducible 
representation obtained using the N 
hydrogen 1s orbitals of a hypothetical H-atom 
chain (with N atoms) as a basis — then find 
the irreducible reps. spanned by this rep. 

★ Follow the same procedure (i) using the 
longitudinal stretching vectors as a basis, (ii) 
using the transverse stretching vectors as a 
basis, (iii) using pσ orbitals as a basis.

[Pt(CN)4]–2+x

Pt
CNNC

CNNC

Pt CNNC
NC

CN

Pt
CNNC

CNNC

Pt CNNC
NC

CN

Chains in K2[Pt(CN)4] and 
K2[Pt(CN)4]Br0.3•3H2O

[Pt(CN)4]-2 : d(Pt-Pt) = a = 3.48 Å

[Pt(CN)4]-1.7 : d(Pt-Pt) = a = 2.88 Å

a

a

a

The tetracyanoplatinates crystallize such that square planar Pt(CN)4x–2 
species stack upon each other as indicated in the illustration below.  (Steric 
factors cause the square planar ions to stack in a staggered fashion, but we’ll 
proceed as if the stacking is eclipsed, i.e., as if there is just one Pt(CN)4x– ion 
per unit cell.) Pt-Pt distances are markedly shortened (from 3.48 Å to 2.88 Å) 
when the platinum is oxidized by reaction with Br2 – that results in the 
intercalation of some additional bromide ions (Br–) into voids between the 
chains in the solid state structure.

  

α p −αd = 8 β    ;   β = −1

βdd = β       β pp = 2β        βdp = 1.5β



[Pt(CN)4]–2+x

Consider only the largest Pt-Pt σ overlaps involving the 5dz2 
orbital (occupied for this d8 complex) and the 6pz orbital (a high-
lying unoccupied orbital that is stabilized to some extent by 
overlap with the CN π* orbitals). 

Set up the 2 × 2 k-dependent Hückel-like secular equation and 
solve it to obtain analytical k-dependent expressions for each of 
the two band curves.  Draw a one-dimensional band dispersion 
diagram that includes bands that derive from the 5dz2 and the 6pz 
orbitals.  Use these parameters: 

Mark the Fermi levels for both systems.  Explain why the Pt-Pt 
distances shrink upon oxidation.  Show the lowest energy 
allowed optical transitions for both systems.

  

α p −αd = 8 β    ;   β = −1

βdd = β       β pp = 2β        βdp = 1.5β

[Pt(CN)4]–2+x

[Pt(CN)4]–2+x

  

αd + (e2π ik •a + e2π ik •−a )β − E e2π ik •a (−1.5β) + e2π ik •−a (1.5β)

e2π ik •−a (−1.5β) + e2π ik •a (1.5β) α p + (e2π ik •a + e2π ik •−a )(−2β) − E
= 0

  

for convenience let β = −1
−2cos2πka − E 3isin 2πka
−3isin2πka 8 + 4cos2πka − E

= 0

  

(E + 2cos2πka)[E − (8 + 4cos2πka)]− 9sin2 2πka = 0

E = 4 + cos2πka ± 25+ 24cos2πka

  

2β cos2πka − E −3iβ sin2πka
3iβ sin2πka −8β − 4β cos2πka − E

= 0

2-dimensional Layers

✿ Bloch’s Theorem in 2– or 3–D

ϕk (r + R) = e
2π ik⋅Rϕk (r) R = ua + vb + wc

k = kaa
∗ + kab

∗ + kac
∗

k ⋅R = kau + kbv + kcw

• Orbitals and bands for a square net of 
Hydrogen atoms 
• Orbitals and bands for graphite



Selection Rules for 
Crystals: Vertical 

Transitions

Intensity, I ∝  ψ i * ′H (t)ψ f dτ∫⎡⎣ ⎤
⎦

2

where ′H (t) is the perturbation of the molecule (solid) 
caused by the electric field of the radiation, and the 
electromagnetic wave propagating in the z-direction

′H (t) =  –
Ex

0

2
qixi

i
∑ e2π ikphotonzi e− iω t + e–2π ikphotonzi eiω t{ }

(See Eqs. 16 & 17 in Handout on "Transitions Between Stationary States")

ψ i ∝uk (r)e2π ik i•r           Important terms to consider ~  eiω te2π i(k f −k i+k photon )•r∫ dτ

ψ f ∝uk (r)e2π ik f •r                                       I = 0    unless   k f − k i + k photon = 0

but k photon ≪ k f , k i  (λphoton ≫ λ f ,λi ), ∴ transition forbidden unless k f − k i ! 0

                             Allowed transitions are vertical, k f ! k i  

2-D Square H array - Band

kx

ky

kx
ky

E

1/2a

1/2a

-1/2a

-1/2a

2-D Graphite (Graphene) π Bands

ka

kb

E

1/2b1/2a



PES Measurements of Graphite

k

k

1/21/2

Densities of States for 1D, 2-D, 3-D


