Handouts - Download and Read!

http://www.chem.tamu.edu/rgroup/hughbanks/ courses/673/handouts/handouts.html

- ★ translation_groups2.pdf
- ★ translation_groups3.pdf
- transitions.pdf Provides background for selection rules. You do not need to memorize the derivation, but results in "boxes" are important to know!

Complex Numbers; Digression

- ★ Cartesian Forms
- ★ The complex plane, vector forms
- ★ polar representation of complex numbers and vectors

Cyclic Groups

Consider C_N , the cyclic group consisting of the operations C_N , C_N^2 , C_N^3 , ..., C_N^{N-1} , C_N^N = *E*. Because all the operations are in the different classes, there are *N* irreducible representations and they are all one dimensional. This means that the characters are the same as the matrices just numbers.

Character Tables for Cyclic Groups

 $\varepsilon = \exp(2\pi i/N)$

	C_N	C_N^2	C_N^{3}		C_N^{N-1}	$C_N^{\mathbf{N}} = E$
Γ^1	ε	ε^2	\mathcal{E}^3	•••	ϵ^{N-1}	\mathcal{E}^N
Γ^2	ϵ^2	\mathcal{E}^4	ε^{6}		ϵ^{2N-2}	ϵ^{2N}
Γ3	E 3	E 6	E 9	•••	<i>€</i> 3 <i>N</i> −3	ϵ^{3N}
÷	:	÷	÷	·.	÷	÷
Γ^{N-1}	ε^{N-1}	ε^{2N-2}	ϵ^{3N-3}		ϵ^{-2}	$\epsilon^{N(N-1)}$
ΓN	ϵ^{N}	ϵ^{2N}	ϵ^{3N}		E−l	\mathcal{E}^{N^2}

Example

- ★ Use the C_6 group to find the characters of the reducible representation obtained using the 6 carbon $p\pi$ orbitals of benzene as a basis then find the irred. reps. spanned by this rep.
- ★ Draw the complex coefficients of the orbitals for each irreducible representation.
- ★ Draw real counterparts of these orbitals.

C ₆ Group						$\varepsilon = \exp(2\pi i / 6)$	
C ₆	C_6	C_6^2	C_6^{3}	C_{6}^{4}	C_{6}^{5}	$C_{N}^{6} = E$	
Γ^1	ε	ε^{2}	ϵ^{3}	$arepsilon^4$	ϵ^{5}	ϵ^{6}	
Γ^2	ε^2	$arepsilon^4$	ε^{6}	ε^{8}	$oldsymbol{arepsilon}^{10}$	$arepsilon^{12}$	
Γ^3	ϵ^{3}	ε^{6}	ε^9	$arepsilon^{12}$	$arepsilon^{15}$	$arepsilon^{18}$	
Γ^4	$arepsilon^4$	$arepsilon^8$	$\boldsymbol{\varepsilon}^{12}$	$arepsilon^{16}$	$arepsilon^{20}$	$arepsilon^{24}$	
Γ^5	ε^{5}	$oldsymbol{arepsilon}^{10}$	ϵ^{15}	$arepsilon^{20}$	$arepsilon^{25}$	ϵ^{30}	
Γ^6	${m arepsilon}^6$	$\boldsymbol{\varepsilon}^{12}$	$arepsilon^{18}$	$arepsilon^{24}$	ϵ^{30}	ϵ^{36}	
C_6	E	C_6	C_{6}^{2}	C_{6}^{3}	C_{6}^{4}	C_N^{5}	
$\Gamma^0 = \mathbf{I}$	Γ^{6} 1	1	1	1	1	1	
Γ^1	1	ε	ε^{2}	ε^{3}	$arepsilon^4$	ϵ^{5}	
Γ^2	1	$arepsilon^2$	ε^4	$arepsilon^6$	ε^{8}	$oldsymbol{arepsilon}^{10}$	
Γ^3	1	ϵ^{3}	ε^{6}	ϵ^9	$arepsilon^{12}$	ϵ^{15}	
Γ^4	1	$arepsilon^4$	ε^{8}	$\boldsymbol{\varepsilon}^{12}$	$oldsymbol{arepsilon}^{16}$	$arepsilon^{20}$	
Γ^5	1	ε^{5}	$oldsymbol{arepsilon}^{10}$	$arepsilon^{15}$	$arepsilon^{20}$	ϵ^{25}	

Translation Group (1-dimension)

★ The one-dimensional translation group is just a particular cyclic group of order N. The trans-polyacetylene below is an example of a system with translational symmetry.

1-D Translation Group Char. Table

This has the same appearance as the C_N group's character table:

					$\varepsilon = \exp($	$(2\pi i / N)$
	t	t ²	t ³		t^{N-1}	$\mathbf{t}^{\mathbf{N}} = E$
Γ^1	ε	ε^2	ϵ^{3}		$oldsymbol{arepsilon}^{N-1}$	$\boldsymbol{\varepsilon}^{N}$
Γ^2	ϵ^2	$arepsilon^4$	ε^{6}		$arepsilon^{2N-2}$	ϵ^{2N}
Γ^3	ϵ^3	$arepsilon^6$	$arepsilon^9$		$arepsilon^{3N-3}$	ϵ^{3N}
:	:	÷	:	·.	÷	÷
Γ^{N-1}	ϵ^{N-1}	ϵ^{2N-2}	ϵ^{3N-3}		$oldsymbol{arepsilon}^{(N-1)^2}$	$arepsilon^{N(N-1)}$
Γ^N	$\boldsymbol{\varepsilon}^{N}$	ϵ^{2N}	ϵ^{3N}		$\boldsymbol{\varepsilon}^{N(N-1)}$	$oldsymbol{arepsilon}^{N^2}$

1-D Translation Group Char. Table - Rearranged $\varepsilon = \exp(2\pi i / N)$								
T _N	Ε	t	t ²		t^{N-2}	t^{N-1}		
:	:	:	:	•••	:	÷		
$\Gamma^{-N/2}$	1	-1	1	•••	1	-1		
$\Gamma^{-N/2+1}$	1	ε	ϵ^2		ϵ^{-2}	$-\varepsilon^{-1}$		
÷	:	:	÷	•••	÷	÷		
Γ^{-1}	1	$arepsilon^{-1}$	$arepsilon^{-2}$		$\varepsilon^{-(N-2)}$	$\epsilon^{-(N-1)}$		
Γ^0	1	1	1	•••	1	1		
Γ^1	1	$\boldsymbol{\varepsilon}^1$	ε^2		$oldsymbol{arepsilon}^{N-2}$	$oldsymbol{arepsilon}^{N-1}$		
÷	:	÷	÷		÷	÷		
$\Gamma^{N/2}$	1	-1	1	•••	1	-1		
$\Gamma^{N/2+1}$	1	 -E	ϵ^2		ϵ^{-2}	$-\varepsilon^{-1}$		
÷	÷	÷	÷	÷	÷	÷		

Character Table for T_N , rewritten * All the IRs of T_N have the form:							
$\varepsilon = e^{2\pi i/N}$	t	t ²	t ³		t ^{N-1}	$\mathbf{t}^{\mathbf{N}} = E$	
Γ^{j}	$oldsymbol{arepsilon}^{j}$	$\boldsymbol{\varepsilon}^{2j}$	$\boldsymbol{\varepsilon}^{_{3j}}$		$arepsilon^{-j}$	1	
-N/2 + 1 < j < N/2 We make the substitution $k = \left(\frac{1}{a}\right) \times \left(\frac{j}{N}\right)$; where $-\frac{1}{2a} < k \le \frac{1}{2a}$							
Making the substitution, $\varepsilon^{j} = (e^{2\pi i/N})^{j} = e^{2\pi ika}$. This is rewritten to yield							
	E	t	t ²	t ³	•••	t ^{N-1}	
$\Gamma(k)$) 1	$e^{2\pi i(k \cdot a)}$	$e^{2\pi i(k\bullet 2a)}$	$e^{2\pi i(k\bullet 3a)}$		$e^{-2\pi i(k \cdot a)}$	

Examples

- ★ Find the characters of the reducible representation obtained using the N hydrogen 1s orbitals of a hypothetical H-atom chain (with N atoms) as a basis — then find the irreducible reps. spanned by this rep.
- Follow the same procedure (*i*) using the longitudinal stretching vectors as a basis, (*ii*) using the transverse stretching vectors as a basis, (*iii*) using p_σ orbitals as a basis.

The tetracyanoplatinates crystallize such that square planar Pt(CN)₄^{x-2} species stack upon each other as indicated in the illustration below. (Steric factors cause the square planar ions to stack in a staggered fashion, but *we'll proceed as if the stacking is eclipsed*, i.e., as if there is just one Pt(CN)₄^{x-} ion per unit cell.) Pt-Pt distances are markedly shortened (from 3.48 Å to 2.88 Å) when the platinum is oxidized by reaction with Br₂ – that results in the intercalation of some additional bromide ions (Br⁻) into voids between the chains in the solid state structure.

$[Pt(CN)_4]^{-2+x}$

Consider only the largest Pt-Pt σ overlaps involving the $5d_{z^2}$ orbital (*occupied* for this d^8 complex) and the $6p_z$ orbital (a highlying *unoccupied* orbital that is stabilized to some extent by overlap with the CN π^* orbitals).

Set up the 2×2 *k*-dependent Hückel-like secular equation and solve it to obtain analytical *k*-dependent expressions for each of the two band curves. Draw a one-dimensional band dispersion diagram that includes bands that derive from the $5d_{z^2}$ and the $6p_z$ orbitals. Use these parameters:

$$\alpha_p - \alpha_d = 8 |\beta| \quad ; \quad \beta = -1$$

$$\beta_{dd} = \beta \qquad \beta_{pp} = 2\beta \qquad \beta_{dp} = 1.5\beta$$

Mark the Fermi levels for both systems. Explain why the Pt-Pt distances shrink upon oxidation. Show the lowest energy allowed optical transitions for both systems.

Densities of States for 1D, 2-D, 3-D

