Handouts - Download and Read!

http://www.chem.tamu.edu/rgroup/hughbanks/ courses/673/handouts/handouts.html

* translation_groups2.pdf
\star translation_groups3.pdf
\star transitions.pdf Provides background for selection rules. You do not need to memorize the derivation, but results in "boxes" are important to know!

Complex Numbers; Digression

* Cartesian Forms
\star The complex plane, vector forms
« polar representation of complex numbers and vectors

Cyclic Groups

Consider $\mathrm{C}_{N^{\prime}}$, the cyclic group consisting of the operations $C_{N}, C_{N}{ }^{2}, C_{N}{ }^{3}, \ldots, C_{N}{ }^{N-1}, C_{N}{ }^{N}$ $=E$. Because all the operations are in the different classes, there are N irreducible representations and they are all one dimensional. This means that the characters are the same as the matrices just numbers.

Character Tables for Cyclic Groups

					$\varepsilon=\exp (2 \pi i / N)$	
	C_{N}	$C_{N}{ }^{\mathbf{2}}$	$C_{N}{ }^{\mathbf{3}}$	\cdots	$C_{N} \mathbf{N - 1}$	$C_{N} \mathbf{N}=E$
Γ^{1}	ε	ε^{2}	ε^{3}	\cdots	ε^{N-1}	ε^{N}
Γ^{2}	ε^{2}	ε^{4}	ε^{6}	\cdots	$\varepsilon^{2 N-2}$	$\varepsilon^{2 N}$
$\Gamma 3$	$\varepsilon 3$	$\varepsilon 6$	$\varepsilon 9$	\cdots	$\varepsilon^{3 N-3}$	$\varepsilon 3 N$
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
Γ^{N-1}	ε^{N-1}	$\varepsilon^{2 N-2}$	$\varepsilon^{3 N-3}$	\cdots	ε^{-2}	$\varepsilon^{N(N-1)}$
ΓN	ε^{N}	$\varepsilon^{2 N}$	$\varepsilon^{3 N}$	\cdots	ε^{-1}	$\varepsilon^{N^{2}}$

Example

\star Use the C_{6} group to find the characters of the reducible representation obtained using the 6 carbon $p \pi$ orbitals of benzene as a basis then find the irred. reps. spanned by this rep.
\star Draw the complex coefficients of the orbitals for each irreducible representation.
\star Draw real counterparts of these orbitals.

C_{6} Group						
\boldsymbol{C}_{6}	C_{6}	$C_{6}{ }^{2}$	$C_{6}{ }^{3}$	$C_{6}{ }^{4}$	$C_{6}{ }^{5}$	$C_{N}{ }^{6}=E$
Γ^{1}	ε	ε^{2}	ε^{3}	ε^{4}	ε^{5}	ε^{6}
Γ^{2}	ε^{2}	ε^{4}	ε^{6}	ε^{8}	ε^{10}	ε^{12}
Γ^{3}	ε^{3}	ε^{6}	ε^{9}	ε^{12}	ε^{15}	ε^{18}
Γ^{4}	ε^{4}	ε^{8}	ε^{12}	ε^{16}	ε^{20}	ε^{24}
Γ^{5}	ε^{5}	ε^{10}	ε^{15}	ε^{20}	ε^{25}	ε^{30}
Γ^{6}	ε^{6}	ε^{12}	ε^{18}	ε^{24}	ε^{30}	ε^{36}
C_{6}	E	C_{6}	$C_{6}{ }^{2}$	$C_{6}{ }^{3}$	$C_{6}{ }^{4}$	$C_{N}{ }^{5}$
$\Gamma^{0}=\Gamma^{6}$	1	1	1	1	1	1
Γ^{1}	1	ε	ε^{2}	ε^{3}	ε^{4}	ε^{5}
Γ^{2}	1	ε^{2}	ε^{4}	ε^{6}	ε^{8}	ε^{10}
Γ^{3}	1	ε^{3}	ε^{6}	ε^{9}	ε^{12}	ε^{15}
Γ^{4}	1	ε^{4}	ε^{8}	ε^{12}	ε^{16}	ε^{20}
Γ^{5}	1	ε^{5}	ε^{10}	ε^{15}	ε^{20}	ε^{25}

$\varepsilon=\exp (2 \pi i / 6)$						
\boldsymbol{C}_{6}	E	C_{6}	$C_{6}{ }^{2}$	$C_{6}{ }^{3}$	$C_{6}{ }^{4}$	$C_{6}{ }^{5}$
$\Gamma^{0}=\Gamma^{6}$	1	1	1	1	1	1
$\Gamma^{1}=E_{1}$	1	ε	ε^{2}	-1	$-\varepsilon$	$-\varepsilon^{2}$
$\Gamma^{2}=E_{2}$	1	ε^{2}	$-\varepsilon$	1	ε^{2}	$-\varepsilon$
$\Gamma^{3}=B$	1	-1	1	-1	1	-1
$\Gamma^{4}=E_{2}$	1	$\varepsilon^{2} *$	$-\varepsilon^{*}$	1	$\varepsilon^{2} *$	$-\varepsilon^{*}$
$\Gamma^{5}=E_{1}$	1	ε^{*}	$\varepsilon^{2} *$	-1	$-\varepsilon^{*}$	$-\varepsilon^{2}{ }^{*}$
Make the identification with						

Make the identification with chaacter tables in some books:

$$
\varepsilon^{3}=\varepsilon^{9}=\varepsilon^{15}=\varepsilon^{21}=-1, \varepsilon^{6}=\varepsilon^{12}=\varepsilon^{18}=\varepsilon^{24}=1
$$

Translation Group (1-dimension)

\star The one-dimensional translation group is just a particular cyclic group of order N . The trans-polyacetylene below is an example of a system with translational symmetry.

1-D Translation Group Char.

Table-Rearranged $\quad \varepsilon=\exp (2 \pi i / N)$

T_{V}	E	t	t^{2}	...	$\mathrm{t}^{\mathrm{N}-2}$	$\mathbf{t}^{\mathrm{N}-1}$
	!	!	!	\ldots	!	
$\Gamma^{-N / 2}$	1	-1	1	...	1	-1
$\bar{\Gamma}^{-\bar{N} / 2+1}$	1	$-\varepsilon$	ε^{2}	...	ε^{-2}	$-\varepsilon^{-1}$
Γ^{-1}	:	ε^{-1}	ε^{-2}	\ldots	$\varepsilon^{-(N-2)}$	$\varepsilon^{-(N-1)}$
Γ^{0}	1	1	1	...	1	1
Γ^{1}	1	ε^{1}	ε^{2}	...	ε^{N-2}	ε^{N-1}
	!	.	!	...		
$\Gamma^{N / 2}$	1	-1	1	.	1	-1
$\bar{\Gamma} \bar{\Gamma}^{\bar{N} / 2+1}$	-	$-\bar{\varepsilon}$	ε^{2}	...	ε^{-2}	$-\varepsilon^{-1}$

1-D Translation Group Char. Table

This has the same appearance as the C_{N} group's character table:

	\mathbf{t}	\mathbf{t}^{2}	\mathbf{t}^{3}	\ldots	$\varepsilon=\exp (2 \pi i / N)$	
\mathbf{t}^{N-1}	$\mathbf{t}^{\mathbf{N}}=E$					
Γ^{1}	ε	ε^{2}	ε^{3}	\cdots	ε^{N-1}	ε^{N}
Γ^{2}	ε^{2}	ε^{4}	ε^{6}	\cdots	$\varepsilon^{2 N-2}$	$\varepsilon^{2 N}$
Γ^{3}	ε^{3}	ε^{6}	ε^{9}	\cdots	$\varepsilon^{3 N-3}$	$\varepsilon^{3 N}$
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
Γ^{N-1}	ε^{N-1}	$\varepsilon^{2 N-2}$	$\varepsilon^{3 N-3}$	\cdots	$\varepsilon^{(N-1)^{2}}$	$\varepsilon^{N(N-1)}$
Γ^{N}	ε^{N}	$\varepsilon^{2 N}$	$\varepsilon^{3 N}$	\cdots	$\varepsilon^{N(N-1)}$	$\varepsilon^{N^{2}}$

Character Table for $\boldsymbol{T}_{\mathrm{N}}$, rewritten

\star All the IRs of $\boldsymbol{T}_{\mathrm{N}}$ have the form:

$\varepsilon=e^{2 \pi i / N}$	\mathbf{t}	$\mathbf{t}^{\mathbf{2}}$	$\mathbf{t}^{\mathbf{3}}$	\cdots	$\mathbf{t}^{\mathbf{N}-\mathbf{1}}$	$\mathbf{t}^{\mathbf{N}}=E$
Γ^{j}	ε^{j}	$\varepsilon^{2 j}$	$\varepsilon^{3 j}$	\cdots	ε^{-j}	1
$-N / 2+1<j<N / 2$						

We make the substitution $k=\left(\frac{1}{a}\right) \times\left(\frac{j}{N}\right) ; \quad$ where $-\frac{1}{2 a}<k \leq \frac{1}{2 a}$
Making the substitution, $\varepsilon^{j}=\left(e^{2 \pi i / N}\right)^{j}=e^{2 \pi i k a}$. This is rewritten to yield

	E	\mathbf{t}	\mathbf{t}^{2}	$\mathbf{t}^{\mathbf{3}}$	\cdots	$\mathbf{t}^{\mathrm{N}-\mathbf{1}}$
$\Gamma(k)$	1	$e^{2 \pi i(k \cdot a)}$	$e^{2 \pi i(k \cdot 2 a)}$	$e^{2 \pi i(k \cdot 3 a)}$	\cdots	$e^{-2 \pi i(k \cdot a)}$

Examples

\star Find the characters of the reducible representation obtained using the N hydrogen 1 s orbitals of a hypothetical H -atom chain (with N atoms) as a basis - then find the irreducible reps. spanned by this rep.
\star Follow the same procedure (i) using the longitudinal stretching vectors as a basis, (ii) using the transverse stretching vectors as a basis, (iii) using p_{σ} orbitals as a basis.

1-D s-band Dispersion curve

The tetracyanoplatinates crystallize such that square planar $\operatorname{Pt}(\mathrm{CN}) 4^{x-2}$ species stack upon each other as indicated in the illustration below. (Steric factors cause the square planar ions to stack in a staggered fashion, but we'll proceed as if the stacking is eclipsed, i.e., as if there is just one $\operatorname{Pt}(\mathrm{CN})_{4}{ }^{x-}$ ion per unit cell.) Pt-Pt distances are markedly shortened (from $3.48 \AA$ to $2.88 \AA$) when the platinum is oxidized by reaction with Br_{2} - that results in the intercalation of some additional bromide ions (Br^{-}) into voids between the chains in the solid state structure.

$\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{-2+x}$

Consider only the largest Pt-Pt σ overlaps involving the $5 d_{z^{2}}$ orbital (occupied for this d^{8} complex) and the $6 p_{z}$ orbital (a highlying unoccupied orbital that is stabilized to some extent by overlap with the $\mathrm{CN} \pi^{*}$ orbitals).

Set up the $2 \times 2 k$-dependent Hückel-like secular equation and solve it to obtain analytical k-dependent expressions for each of the two band curves. Draw a one-dimensional band dispersion diagram that includes bands that derive from the $5 d_{z^{2}}$ and the $6 p_{z}$ orbitals. Use these parameters:

$$
\begin{gathered}
\alpha_{p}-\alpha_{d}=8|\beta| \quad ; \quad \beta=-1 \\
\beta_{d d}=\beta \quad \beta_{p p}=2 \beta \quad \beta_{d p}=1.5 \beta
\end{gathered}
$$

Mark the Fermi levels for both systems. Explain why the Pt-Pt distances shrink upon oxidation. Show the lowest energy allowed optical transitions for both systems.

$$
\left|\begin{array}{cc}
\alpha_{d}+\left(e^{2 \pi i k \cdot a}+e^{2 \pi i k \cdot-a}\right) \beta-E & e^{2 \pi i k \cdot a}(-1.5 \beta)+e^{2 \pi i k \cdot-a}(1.5 \beta) \\
e^{2 \pi i k \cdot-a}(-1.5 \beta)+e^{2 \pi i k \cdot a}(1.5 \beta) & \alpha_{p}+\left(e^{2 \pi i k \cdot a}+e^{2 \pi i k \cdot-a}\right)(-2 \beta)-E
\end{array}\right|=0
$$

$\left|\begin{array}{cc}2 \beta \cos 2 \pi k a-E & -3 i \beta \sin 2 \pi k a \\ 3 i \beta \sin 2 \pi k a & -8 \beta-4 \beta \cos 2 \pi k a-E\end{array}\right|=0$
for convenience let $\beta=-1$

$$
\left|\begin{array}{cc}
-2 \cos 2 \pi k a-E & 3 i \sin 2 \pi k a \\
-3 i \sin 2 \pi k a & 8+4 \cos 2 \pi k a-E
\end{array}\right|=0
$$

$(E+2 \cos 2 \pi k a)[E-(8+4 \cos 2 \pi k a)]-9 \sin ^{2} 2 \pi k a=0$
$E=4+\cos 2 \pi k a \pm \sqrt{25+24 \cos 2 \pi k a}$
$\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{-2+x}$

$\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{-2+x}$

2-dimensional Layers

* Bloch's Theorem in 2- or 3-D

$$
\begin{array}{ll}
\varphi_{\mathbf{k}}(\mathbf{r}+\mathbf{R})=e^{2 \pi i \mathbf{k} \cdot \mathbf{R}} \varphi_{\mathbf{k}}(\mathbf{r}) \quad & \mathbf{R}=u \mathbf{a}+v \mathbf{b}+w \mathbf{c} \\
& \mathbf{k}=k_{a} \mathbf{a}^{*}+k_{a} \mathbf{b}^{*}+k_{k} \mathbf{c}^{*} \\
& \mathbf{k} \cdot \mathbf{R}=k_{a} u+k_{b} v+k_{c} w
\end{array}
$$

- Orbitals and bands for a square net of Hydrogen atoms
- Orbitals and bands for graphite

Selection Rules for Crystals: Vertical Transitions

Intensity, $\mathrm{I} \propto\left[\int \psi_{i} * \mathcal{H}^{\prime}(t) \psi_{f} d \tau\right]^{2}$
where $\mathcal{H}^{\prime}(t)$ is the perturbation of the molecule (solid) caused by the electric field of the radiation, and the electromagnetic wave propagating in the z-direction

$\mathcal{H}^{\prime}(t)=-\frac{E_{x}^{0}}{2} \sum_{i} q_{i} x_{i}\left\{e^{2 \pi i k_{\text {photon }} z_{i}} e^{-i \omega t}+e^{-2 \pi i k_{\text {phooon }} z_{i}} e^{i \omega t}\right\}$
(See Eqs. $16 \& 17$ in Handout on "Transitions Between Stationary States")
$\psi_{i} \propto u_{\mathbf{k}}(\mathbf{r}) e^{2 \pi i \mathbf{k}_{i} \cdot \mathbf{r}} \quad$ Important terms to consider $\sim \int e^{i \omega t} e^{2 \pi i\left(\mathbf{k}_{f}-\mathbf{k}_{i}+\mathbf{k}_{\text {photoon }}\right) \mathbf{r}} d \tau$
$\psi_{f} \propto u_{\mathbf{k}}(\mathbf{r}) e^{2 \pi \mathbf{k}_{f} \cdot r} \quad \mathrm{I}=0 \quad$ unless $\quad \mathbf{k}_{f}-\mathbf{k}_{i}+\mathbf{k}_{\text {photon }}=0$
but $\left|\mathbf{k}_{\text {photon }}\right| \ll\left|\mathbf{k}_{f}\right|,\left|\mathbf{k}_{i}\right|\left(\lambda_{\text {photon }} \gg \lambda_{f}, \lambda_{i}\right), \therefore$ transition forbidden unless $\mathbf{k}_{f}-\mathbf{k}_{i} \simeq 0$
Allowed transitions are vertical, $\mathbf{k}_{f} \simeq \mathbf{k}_{i}$

2-D Graphite (Graphene) π Bands

Densities of States for 1D, 2-D, 3-D

