Electronic-Vibrational Coupling

Vibronic Coupling

\star Because they have $g-g$ character, the $d-d$ transitions of complexes of the transition metals are "forbidden" (LaPorte forbidden).
\star Complexes with noncentrosymmetric coordination geometries (e.g., tetrahedral) have more intense d - d spectra.
\star Spectra in centrosymmetric (e.g., octahedral) complexes "acquire intensity" via vibronic coupling.

Colors of $\mathrm{Co}($ III) solutions

Solutions are ordered according to the ligand spectrochemical series: (a) CN^{-}, (b) NO_{2}^{-}, (c) phen, (d) en, (e) NH_{3}, (f) gly, (g) $\mathrm{H}_{2} \mathrm{O}$, (h) ox^{2-}, (i) $\mathrm{CO}_{3}{ }^{2-}$.

The total molecular wavefunction can usually be approximated as a product of electronic, vibrational, and rotational parts:

$$
\mathcal{H} \Psi
$$

It is good first approximation to assume that electronic, vibrational, and rotational motion can be separated:

$$
\mathcal{H} \approx \mathcal{H}_{\text {elec. }}+\mathcal{H}_{v i b .}+\mathcal{H}_{r o t .} .
$$

In this approximation, the wavefunction is a product:

$$
\begin{gathered}
\Psi=\psi_{\text {elec. }} \psi_{\text {vib. }} \psi_{\text {rot. }} \\
\mathcal{H} \Psi=\psi_{\text {vib. }} \psi_{\text {rot. }}\left(\mathcal{H}_{\text {elec. }} \psi_{\text {elec. }}\right)+ \\
+\psi_{\text {elec. } .} \psi_{\text {rot. }}\left(\mathcal{H}_{\text {vi6. }} \psi_{\text {vib. }}\right)+\psi_{\text {elec. }} \psi_{\text {vib. } .}\left(\mathcal{H}_{\text {rot. }} \psi_{\text {rot. }}\right) \\
\mathcal{H} \Psi=\left(E_{\text {elec. } .}+E_{\text {vib. }}+E_{\text {rot. } .}\right) \Psi
\end{gathered}
$$

However, the "separability" is not exact.
More accurately, $\mathcal{H} \approx \mathcal{H}_{\text {elec. }}+\mathcal{H}_{\text {vib. }}+\mathcal{H}_{\text {rot. }}+\mathcal{H}_{\text {elec-vi }}$

Including the effects of coupling demands a modified wavefunction. In the simplest approximation, $\psi_{e l e c .}$ and $\psi_{v i b .}$ not separable.
\therefore Consider the product, $\psi_{e l e c .}, \psi_{v i b}$, for examining selection rules:

$$
\int \psi_{\text {elec. }}^{g n d} \psi_{\text {vib. }}^{g n d} \hat{\mathbf{d}} \psi_{\text {elec. }}^{e x} \psi_{v i b .}^{e x} d \tau \stackrel{?}{=} 0
$$

$\psi_{v i b}^{\text {gnd }}$. generally belongs to totally symmetric rep. (otherwise, "hot bands" are involved). \therefore consider,

$$
\int \psi_{\text {elec. }}^{\text {gnd }} \hat{\mathbf{d}} \psi_{e l e c .}^{e x} \psi_{v i b}^{e x} d \tau_{=}^{?}=0
$$

Dichroism of $\left[\text { trans- } \mathrm{CoCl}_{2}(\text { en })_{2}\right]^{+}$

Fig. 9.13 in Cotton

Tanabe-Sugano Diagram E State Symmetry Correlation
In O_{h} symmetry, two spin-allowed transitions are ${ }^{1} A_{1 g}$ to ${ }^{1} T_{1 g}$ and ${ }^{1} T_{2 g}$. When symmetry is lowered to $D_{4 h}$, the excited states are split as:
${ }^{1} T_{1 g}:{ }^{1} A_{2 g}+{ }^{1} E_{g}$
${ }^{1} T_{2 g}:{ }^{1} B_{2 g}+{ }^{1} E_{g}$

Configurations and States

Splitting of $T_{1 g}$ in O_{h} on lowering symmetry to $D_{4 h}$

Electronic Symmetries

Vibrations of the trans-[$\left.\mathrm{CoCl}_{2} \mathrm{~N}_{4}\right]$ group
_ On p. 293 of Cotton's text, he gives $2 A_{1 g}, B_{1 g}, B_{2 g}, E_{g}, 2 A_{2 u}, B_{1 u}, 3 E_{u}$

This should be
$2 A_{1 g}, B_{1 g}, B_{2 g}, E_{g}, 2 A_{2 u}, B_{2 u}, 3 E_{u}$

Allowedness w/ Vibronic Coupling

Electronic	Polarization	
Transition	z	(x, y)
$A_{1 g} \rightarrow A_{2 g}$	forbidden	allowed
$A_{1 g} \rightarrow B_{2 g}$	forbidden	allowed
$A_{1 g} \rightarrow E_{g}$	allowed	allowed

Use info. with Qualitative Energy Diagram to assign spectrum

Graphical Summary $\quad O_{h} \quad D_{4 h}$

- Because of the $O_{h} \rightarrow D_{4 \mathrm{~h}}$ symmetry correlations, the specific configurations shown correspond to only the states shown - even in O_{h}.
- The dashed transitions are dipole and vibronically forbidden in z-polarization.
- The x, y-polarized transition at $\sim 23,000 \mathrm{~cm}^{-1}$ is difficult to assign. The ${ }^{1} B_{2 g}$ state should be relatively favored by the weaker ligand field of the Cl ligands, but there is less $\mathrm{e}^{-}-\mathrm{e}^{-}$ repulsion in the ${ }^{1} A_{2 g}$ state.

$O_{h}: E\left({ }^{1} T_{2 g}\right)-E\left({ }^{1} T_{1 g}\right)=16 B \approx 17000 \mathrm{~cm}^{-1}$

Graphical Tools for getting relative Energies of States

$$
\begin{aligned}
& -\phi_{c} \quad \nleftarrow \phi_{c} \quad \downarrow \phi_{c} \quad \downarrow \phi_{c} \quad \uparrow \phi_{c} \\
& \downarrow \phi_{b} \quad \uparrow \phi_{b} \quad \downarrow \phi_{b} \quad \uparrow \phi_{b} \quad \downarrow \phi_{b}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{1} \Psi_{g r} \quad \begin{array}{cc}
{ }^{3} \Psi_{e x} \\
\left(M_{S}=1\right)
\end{array} \begin{array}{c}
{ }^{3} \Psi_{e x} \\
{ }_{\left(M_{S}=-1\right)}
\end{array} \quad \Psi_{e x}(\mathrm{~A}) \quad \Psi_{e x}(\mathrm{~B}) \\
& { }^{3} \Psi_{e x}=1 / \sqrt{2}\left(\Psi_{e x}(\mathrm{~A})+\Psi_{e x}(\mathrm{~B})\right) \\
& \begin{array}{c}
{ }^{1} \Psi_{e x}=1 / v 2\left(\Psi_{e x}(\mathrm{~A})-\Psi_{e x}(\mathrm{~B})\right) \\
\left(M_{S}=0\right)
\end{array}
\end{aligned}
$$

Energies of each configuration are given by counting the orbital energies, adding up the repulsions $\left(J_{i j}\right)$ and subtracting the exchange "stabilizations" ($K_{i j}$) between like spins.

A Graphical Scheme for getting relative Energies of States

$E_{g r}=2 \varepsilon_{a}+2 \varepsilon_{b}+J_{a, a}+J_{b, b}+4 J_{a, b}-2 K_{a, b}$
$E_{e x}^{(3)}=2 \varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}+J_{a, a}+2 J_{a, b}+2 J_{a, c}+J_{b, c}-\left(K_{a, b}+K_{a, c}\right)-K_{b, c}$
$E_{e x}^{A}=2 \varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}+J_{a, a}+2 J_{a, b}+2 J_{a, c}+J_{b, c}-\left(K_{a, b}+K_{a, c}\right)$
$E_{e x}^{B}=2 \varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}+J_{a, a}+2 J_{a, b}+2 J_{a, c}+J_{b, c}-\left(K_{a, b}+K_{a, c}\right)$
$E_{e x}^{A+B}+E_{e x}^{A-B}=E_{e x}^{A}+E_{e x}^{B}$; but $E_{e x}^{A+B}=E_{e x}^{(3)}$ and $E_{e x}^{A-B}=E_{e x}^{(1)}$
$\therefore E_{e x}^{(1)}=E_{e x}^{A}+E_{e x}^{B}-E_{e x}^{(3)}$
$E_{e x}^{(1)}=2 \varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}+J_{a, a}+2 J_{a, b}+2 J_{a, c}+J_{b, c}-\left(K_{a, b}+K_{a, c}\right)+K_{b, c}$
$E_{e x}^{(1)}-E_{e x}^{(3)}=+2 K_{b, c}$

A Graphical Scheme for getting relative Energies of States

Complex d-orbital J and K's

$J_{0,0}$	$A+4 B+3 C$	
$J_{2,2}=J_{-2,-2}=J_{2,-2}$	$A+4 B+2 C$	
$J_{2,1}=J_{-2,-1}=J_{2,-1}=J_{-2,1}$	$A-2 B+C$	The Coulomb $\left(J_{i j}\right)$
$J_{2,0}=J_{-2,0}$	$A-4 B+C$	
$J_{1,1}=J_{-1,-1}=J_{1,-1}$	$A+B+2 C$	and exchange
$J_{1,0}=J_{-1,0}$	$A+2 B+C$	$\left(K_{i j}\right)$ integrals
$K_{1,-1}$	$6 B+2 C$	shown here can
$K_{2,-2}$	C	often be used to
$K_{2,1}=K_{-2,-1}$	$6 B+C$	C
$K_{2,-1}=K_{-2,1}$	$C B+C$	endculate state
$K_{2,0}=K_{-2,0}$	$B+C$	differences.
$K_{1,0}=K_{-1,0}$	$C \approx 2500-5500 \mathrm{~cm}^{-1}$	
$B \approx 650-1100 \mathrm{~cm}^{-1}$		

For $1^{\text {st }}$ row transition metals, Racah parameters B and C have typical ranges shown. (State energy differences don't involve A.)

Example: B parameter for V^{3+}

${ }^{3} F$ state: $\quad\left|{ }^{3} F ; 31\right\rangle=\left|2^{+} 1^{+}\right\rangle$

$E\left({ }^{3} F\right)=2 h_{d}+J_{2,1}-K_{2,1}$
$=2 h_{d}+(A-2 B+C)-(6 B+C)$
$=2 h_{d}+A-8 B$
${ }^{3} P$ state:
$\left.{ }^{3} P ; 11\right\rangle=\sqrt{3} / 5\left|1^{+} 0^{+}\right\rangle-\sqrt{2} / 5\left|2^{+}-1^{+}\right\rangle$
$E\left(1^{+} 0^{+}\right)=2 h_{d}+J_{1,0}-K_{1,0}$
$=2 h_{d}+(A+2 B+C)-(B+C)$
$=2 h_{d}+A+B$
$E\left(2^{+}-1^{+}\right)=2 h_{d}+J_{2,-1}-K_{2,-1}$
$=2 h_{d}+(A-2 B+C)-C$
$=2 h_{d}+A-2 B$
$E\left({ }^{3} P\right)=E\left(1^{+} 0^{+}\right)+E\left(2^{+}-1^{+}\right)-E\left({ }^{3} F\right)$
$=2 h_{d}+A+7 B$
$E\left({ }^{3} P\right)-E\left({ }^{3} F\right)=15 B=12,924 \mathrm{~cm}^{-1}$
$B=861.7 \mathrm{~cm}^{-1}$

Slater-Condon and Racah Parameters

The "Slater-Condon parameters" are defined by
$F^{k} \equiv e^{2} \int_{0}^{\infty} r_{1}^{2}\left[\int_{0}^{\infty} r_{2}^{2} \frac{r_{<}^{k}}{r_{>}^{k+1}}\left|R_{n l}\left(r_{1}\right)\right|^{2}\left|R_{n l}\left(r_{2}\right)\right|^{2} d r_{2}\right] d r_{1} \quad ; \quad \frac{r_{<}^{k}}{r_{>}^{k+1}}=\left\{\begin{array}{l}\frac{r_{1}^{k}}{r_{2}^{k+1}} \text { if } r_{2}>r_{1} \\ \frac{r_{2}^{k}}{r_{1}^{k+1}} \text { if } r_{1}>r_{2}\end{array}\right.$
and (in the d-shell): $F_{0} \equiv F^{0}, F_{2}=\frac{F^{2}}{49}, F_{4}=\frac{F^{4}}{441}$
The "Racah Parameters" are related to the Slater-Condon parameters by

$$
\begin{gathered}
A=F_{0}-49 F_{4} \\
B=F_{2}-5 F_{4} \\
C=35 F_{4}
\end{gathered}
$$

$\begin{aligned} & \text { Energies } \\ & \text { of } d^{2} \text { and } \\ & d^{3} \text { Terms } \end{aligned}$	N	Term Symbol	Slater-Condon Expression	Racah Expression
	d^{2}	${ }^{3} F$	$F_{0}-8 F_{2}-9 F_{4}$	$A-8 B$
		${ }^{3} P$	$F_{0}+7 F_{2}-84 F_{4}$	$A+7 B$
		${ }^{1} G$	$F_{0}+4 F_{2}+F_{4}$	$A+4 B+2 C$
		${ }^{1} D$	$F_{0}-3 F_{2}+36 F_{4}$	$A-3 B+2 C$
		${ }^{1} S$	$F_{0}+14 F_{2}-126 F_{4}$	$A+14 B+7 C$
	d^{3}	${ }^{4} F$	$3 F_{0}-15 F_{2}-72 F_{4}$	$3 A-15 B$
		${ }^{4} P$	$3 F_{0}-147 F_{4}$	3 A
		${ }^{2} H$	$3 F_{0}-6 F_{2}-12 F_{4}$	$3 A-6 B+3 C$
		${ }^{2} P$	$3 F_{0}-6 F_{2}-12 F_{4}$	$3 A-6 B+3 C$
		${ }^{2} G$	$3 F_{0}-11 F_{2}+13 F_{4}$	$3 A-11 B+3 C$
		${ }^{2} F$	$3 F_{0}+9 F_{2}-87 F_{4}$	$3 A+9 B+3 C$
		$\begin{gathered} { }^{2} D \\ \lambda=3,+ \\ \lambda=1,- \end{gathered}$	$\begin{gathered} 3 F_{0}+5 F_{2}+3 F_{4} \\ \pm\left(193 F_{2}-1650 F_{2} F_{4}-165 F_{4}\right)^{1 / 2} \\ +8325 F_{4}^{2} \end{gathered}$	$\begin{gathered} 3 A-3 B+5 C \\ \pm\left(193 B^{2}+8 B C+4 C^{2}\right)^{1 / 2} \end{gathered}$

Tanabe-Sugano ΔE 's and the Scheme

Worked out details: singlet states example for the high-field limit for the d^{6} case.

$$
\begin{aligned}
& { }^{1} A_{1 g}: 6 \varepsilon_{t_{2 g}}+3 J_{x y, x y}+12 J_{x y, x z}-6 K_{x y, x z} \\
& { }^{1} T_{1 g}: 5 \varepsilon_{t_{2 g}}+\varepsilon_{e_{g}}+2 J_{x y, x y}+J_{x^{2}-y^{2}, x y}+12 J_{x y, x z}-6 K_{x y, x z}+K_{x^{2}-y^{2}, x y} \\
& { }^{1} T_{2 g}: 5 \varepsilon_{t_{2 g}}+\varepsilon_{e_{g}}+2 J_{x y, x y}+J_{x y, z^{2}}+8 J_{x y, x z}+4 J_{x z, z^{2}}-4 K_{x y, x z}-2 K_{x z, z^{2}}+K_{x y, z^{2}} \\
& E\left({ }^{1} T_{2 g}\right)-E\left(\left(_{1 g} T_{1 g}\right)=\right. \\
& \left(J_{x y, z^{2}}-J_{x^{2}-y^{2}, x y}\right)+4\left(J_{x z, z^{2}}-J_{x y, x z}\right)+2\left(K_{x y, x z}-K_{x z, z^{2}}\right)+\left(K_{x y, z^{2}}-K_{x^{2}-y^{2}, x y}\right) \\
& =-8 B+4(4 B)+2(3 B-B)+(4 B-0)=16 B
\end{aligned}
$$

Note: The exchange contributions are positive because these are the singlet states - see the diagram - back four slides!

Some Coulomb and Exchange Integrals

Coulomb and Exchange Integrals	Racah Parameters	
$J_{x y, x y}=J_{x, x z}=J_{y z, y z}=J_{z^{2}, z^{2}}=J_{x^{2}-y^{2}, x^{2}-y^{2}}$	$A+4 B+3 C$	
$J_{x z, y z}=J_{x y, y z}=J_{x y, x z}=J_{x^{2}-y^{2}, y z}=J_{x^{2}-y^{2}, x z}$	$A-2 B+C$	The Coulomb ($J_{i j}$)
$J_{x y, z^{2}}=J_{x^{2}-y^{2}, z^{2}}$	$A-4 B+C$	and exchange
$J_{y z, z^{2}}=J_{x, 2} z^{2}$	$A+2 B+C$	$\left(K_{i j}\right)$ integrals
$J_{x^{2}-y^{2}, x y}$	$A+4 B+C$	shown here can
$K_{x y, y z}=K_{x z, y z}=K_{x y, x z}=K_{x^{2}-y^{2}, y z}=K_{x^{2}-y^{2}, x z}$	$3 B+C$	often be used to
$K_{x y, z^{2}}=K_{x^{2}-y^{2}, z^{2}}$	$4 B+C$	calculate state
$K_{y, 2 z^{2}}=K_{x, 2 z^{2}}$	$B+C$	
$K_{x^{2}-y^{2}, x y}$	C	energy
$\int \varphi_{x z}(1) \varphi_{x y}(2)\left(1 / /_{r 2}\right) \varphi_{y z}(1) \varphi_{x^{2}-y^{2}}(2) d \tau_{1} d \tau_{2}$	-3B	differences.

$$
B \approx 650-1100 \mathrm{~cm}^{-1}
$$

$$
C \approx 2500-5500 \mathrm{~cm}^{-1}
$$

For $1^{\text {st }}$ row transition metals, Racah parameters B and C have typical ranges shown. (State energy differences don't involve A.)

Jahn-Teller Theorem

Nonlinear Molecules in orbitally degenerate states are inherently unstable with respect to distortion.
We can write the ground state electronic energy, $E_{0}(Q)$, as a series expansion in each normal coordinate, Q :

$$
E_{0}(Q)=E_{0}^{0}+E_{0}^{1}(Q) Q+E_{0}^{2}(Q) Q^{2}+\ldots
$$

Q - belongs to non-totally symmetric rep.

Comments Regarding Stable Structures

- Movement of the nuclei along a non-totally symmetric normal coordinate represents an "instantaneous distortion" of the molecule.
- Normal coordinates are defined in terms of the molecular geometry as it exists in at least a local energy minimum as far as nuclear positions are concerned. At a local minimum,

$$
E_{0}^{1}(0)=\left(\frac{\partial E}{\partial Q}\right)_{0}=0 \quad \text { For stable molecules }
$$

- What are the conditions under which the first term of the power series expansion is nonzero?In other words, when is the molecule is not stable with respect to distortion?

Symmetry Constraints on

Structural Stability

Ground state energy, E, is given by: $E=\int \Psi_{0}^{*} \mathcal{H} \Psi_{0} d \tau$

$$
\text { Consider }\left(\frac{\partial E}{\partial Q}\right)_{0} \text {, where } Q \text { does not }
$$

belong to the totally symmetric representation, $\Gamma_{A_{1}}$

$$
\begin{gathered}
\left(\frac{\partial E}{\partial Q}\right)_{0}=\int\left(\frac{\partial \Psi_{0}^{*}}{\partial Q}\right)_{0} \mathcal{H} \Psi_{0} d \tau+\int \Psi_{0}^{*} \mathcal{H}\left(\frac{\partial \Psi_{0}}{\partial Q}\right)_{0} d \tau \\
+\int \Psi_{0}^{*}\left(\frac{\partial \mathcal{H}}{\partial Q}\right)_{0} \Psi_{0} d \tau
\end{gathered}
$$

The first two terms vanish, by symmetry.

$$
\therefore\left(\frac{\partial E}{\partial Q}\right)_{0}=\int \Psi_{0}^{*}\left(\frac{\partial \mathcal{H}}{\partial Q}\right)_{0} \Psi_{0} d \tau \sim \Gamma_{0} \otimes \Gamma_{\left(\frac{\partial \mathcal{H}}{\partial Q}\right)_{0}} \otimes \Gamma_{0}
$$

Summary: J-T active modes

If the ground state, Ψ_{0}, is orbitally degenerate and transforms as Γ_{0}, then then the molecule will distort to remove the degeneracy.
Possible symmetries of the distortion are found by taking the symmetric direct product:

$$
\left[\Gamma_{0} \otimes \Gamma_{0}\right]^{+}
$$

(Totally symmetric modes are ignored.)

Examples

\star The best known J-T unstable molecules are $\mathrm{Cu}^{\text {II }} \mathrm{d}^{9}$ "octahedral" cases. What is the expected distortion coordinate?

* "Tetrahedral" $\mathrm{Cu}^{\mathrm{II}}$ complexes are common. Are they really tetrahedral?
« Are octahedral $\mathrm{Ni}^{\text {II }}$ complexes J-T unstable, (i) in their ground states?, (ii) in excited states of the ground configuration?
» Is cyclobutadiene J-T unstable, (i) in its ground state?, (ii) in excited states of the ground configuration?
\star What is the expected structure of the $\mathrm{CrN}_{3}{ }^{6-}$ ion (in $\mathrm{Ca}_{3}\left(\mathrm{CrN}_{3}\right)$)?
\star Would an octahedral $V^{\text {III }}$ complex be expected to exhibit a J-T distortion?

$$
\begin{aligned}
& \begin{array}{c|ccccc|c|c}
O & E & 8 C_{3} & \begin{array}{c}
3 C_{2} \\
\left(=C_{4}^{2}\right)
\end{array} & 6 C_{4} & 6 C_{2} & & \\
\hline A_{1} & 1 & 1 & 1 & 1 & 1 & & x^{2}+y^{2}+z^{2} \\
A_{2} & 1 & 1 & 1 & -1 & -1 & & \\
E & 2 & -1 & 2 & 0 & 0 & & \left(2 z^{2}-x^{2}-y^{2}, x^{2}-y^{2}\right) \\
T_{1} & 3 & 0 & -1 & 1 & -1 & \left(R_{x}, R_{y}, R_{z}\right) ;(x, y, z) & \\
T_{2} & 3 & 0 & -1 & -1 & 1 & & (x y, x z, y z)
\end{array} \\
& \begin{array}{l}
{[E \otimes E]^{-}} \\
{[E \times E]^{+}}
\end{array}\left|\begin{array}{ccccc}
1 & 1 & 1 & -1 & -1 \\
3 & -1 & 3 & 1 & 1
\end{array}\right|=A_{1} \oplus B_{1} \oplus B_{2}
\end{aligned}
$$

Tetrahedral Group: T_{d}

T_{d}	E	$8 C_{3}$	$3 C_{2}$	$6 S_{4}$	$6 \sigma_{d}$		
A_{1}	1	1	1	1	1		$x^{2}+y^{2}+z^{2}$
A_{2}	1	1	1	-1	-1		
E	2	-1	2	0	0		$\left(2 z^{2}-x^{2}-y^{2}, x^{2}-y^{2}\right)$
T_{1}	3	0	-1	1	-1	$\left(R_{x}, R_{y}, R_{z}\right)$	
T_{2}	3	0	-1	-1	1	(x, y, z)	$(x y, x z, y z)$

Examples - Some Answers

$\star \mathrm{Cu}^{\mathrm{II}} \mathrm{d}^{9}$ "octahedral" cases:
$\left[\mathrm{E}_{\mathrm{g}} \otimes \mathrm{E}_{\mathrm{g}}\right]^{+}=\mathrm{A}_{1 \mathrm{~g}} \oplus \mathrm{E}_{\mathrm{g}}$
$\star \mathrm{Cu}^{\mathrm{II}} \mathrm{d}^{9}$ "tetrahedral" cases:
$\left[\mathrm{T}_{2} \otimes \mathrm{~T}_{2}\right]^{+}=\mathrm{A}_{1} \oplus \mathrm{E} \oplus \mathrm{T}_{2}$
$\star \mathrm{CrN}_{3}{ }^{6-}$ ion:
$\left[\mathrm{E}^{\prime \prime} \otimes \mathrm{E}^{\prime \prime}\right]^{+}=\mathrm{A}_{1 \mathrm{~g}} \oplus \mathrm{E}^{\prime}$
$\star \mathrm{V}^{\text {III }}$ complex:
Ground State is $\left[\mathrm{T}_{2 \mathrm{~g}} \otimes \mathrm{~T}_{2 \mathrm{~g}}\right]^{-}={ }^{3} \mathrm{~T}_{1 \mathrm{~g}}$ $\left[\mathrm{T}_{1 \mathrm{~g}} \otimes \mathrm{~T}_{1 \mathrm{~g}}\right]^{+}=\mathrm{A}_{1 \mathrm{~g}} \oplus \mathrm{Eg}_{\mathrm{g}} \oplus \mathrm{T}_{2 \mathrm{~g}}$

