
Electronic-Vibrational Coupling

Colors of Co(III) solutions

Vibronic Coupling

★ Because they have g—g character, the d-d 
transitions of complexes of the transition 
metals are “forbidden” (LaPorte forbidden). 

★ Complexes with noncentrosymmetric 
coordination geometries (e.g., tetrahedral) 
have more intense d-d spectra. 

★ Spectra in centrosymmetric (e.g., 
octahedral) complexes “acquire intensity” 
via vibronic coupling.

The total molecular wavefunction can 
usually be approximated as a product of 
electronic, vibrational, and rotational parts:

   

H  Ψ
It is good first approximation to assume that electronic, 

vibrational, and rotational motion can be separated: 
H ≈ H elec. + H vib. + H rot.  

In this approximation, the wavefunction is a product: 
Ψ =ψ elec.ψ vib.ψ rot.

   

H  Ψ =ψ vib.ψ rot. H elec.ψ elec.( ) +
+ψ elec.ψ rot. H vib.ψ vib.( ) +ψ elec.ψ vib. H rot.ψ rot.( )

H  Ψ = Eelec. + Evib. + Erot.( )Ψ
However, the "separability" is not exact. 

More accurately, H ≈ H elec. + H vib. + H rot . + H elec-vib



Including the effects of coupling demands a 
modified wavefunction.  In the simplest 
approximation, ψelec. and ψvib. not separable. 

∴Consider the product, ψelec.ψvib., for 
examining selection rules:

ψ elec.
gndψ vib.

gnd d̂ψ elec.
ex ψ vib.

ex∫ dτ =
?

0

ψ vib.
gnd  generally belongs to totally symmetric rep. 

(otherwise, "hot bands" are involved). ∴  consider,

ψ elec.
gnd d̂ψ elec.

ex ψ vib.
ex∫ dτ =

?
0

Vibronic Coupling in [trans-Co(en)2Cl2]+

• Spectra: Fig. 9.13 in Cotton - (solution spectrum is 
nearly indistinguishable from [trans-Co(NH3)4Cl2]

+) 

• Virtual D4h symmetry, d6, low-spin 

• In approximate Oh symmetry, ground state 
configuration is (t2g)

6, 1A1g state. 

• Dipole allowed transitions?  Lowest energy 
singlets?  See Tanabe-Sugano diagram. 

• Oh to D4h correlations? 

• Vibrations of the [trans-CoCl2N4] grouping

  

D4h E 2C4 C2(C 4
2 ) 2C2

′ 2C2
′′ i 2S4 σ h 2σ v 2σ d

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 ,  z2

A2g 1 1 1 −1 −1 1 1 1 −1 −1 Rz

B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2 − y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy
Eg 2 0 −2 0 0 2 0 −2 0 0 (Rx , Ry ) (xz, yz)
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z
B1u 1 −1 1 1 −1 −1 1 −1 −1 1
B2u 1 −1 1 −1 1 −1 1 −1 1 −1
Eu 2 0 −2 0 0 −2 0 2 0 0 (x,  y)

Dichroism of [trans-CoCl2(en)2]+

Fig. 9.13 in Cotton
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Qualitative MO Diagram
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(replace L5 and L6 
with X1 and X2)
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X1 and X2 lower in the spectrochemical series and are 
weaker σ donors.  Antibonding z2 orbital pushed up 
less by antibonding interaction with the X ligands.

Configurations and States

a1g  z2

b1g x2 - y2

b2g  xy
eg (xz,yz)

A1g Eg B2g Eg A2g

eg ⊗ a1g =
Eg

b2g ⊗ a1g =
B2g

eg ⊗ b1g =
Eg

b2g ⊗ b1g =
A2gEg B2g Eg A2g

Tanabe-Sugano 
Diagram & State 
Symmetry Correlation

In Oh symmetry, two 
spin-allowed 
transitions are 1A1g to 
1T1g and 1T2g.  When 
symmetry is lowered 
to D4h, the excited 
states are split as: 
1T1g : 1A2g + 1Eg 

1T2g : 1B2g + 1Eg

Splitting of T1g in Oh on lowering 
symmetry to D4h

O E 8C3
3C2

(= C4
2 )

6C4 6C2

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 –1 –1
E 2 –1 2 0 0 (2z2 – x2 − y2,x2 − y2 )
T1 3 0 –1 1 –1 (Rx ,Ry ,Rz );  (x,  y,  z)
T2 3 0 –1 –1 1 (xy,xz, yz)

D4 E 2C4 C2(C 4
2 ) 2C2

′ 2C2
′′

A1 1 1 1 1 1 x2 + y2,  z2

A2 1 1 1 –1 –1 z,  Rz
B1 1 –1 1 1 –1 x2 − y2

B2 1 –1 1 –1 1 xy
E 2 0 –2 0 0 (x,  y),  (Rx ,Ry ) (xz, yz)

T1(Oh ) 3 1 −1 −1 −1



Electronic Symmetries

Electronic Transitions
A1g → A1g    A1g → B2g     A1g → Eg  

ψ elec.
gnd zψ elec.

ex

ψ elec.
gnd (x,y)ψ elec.

ex

Γall    21     3       –3        –3       –1      –3    –1     5       5       3

Γt+r    6      2       –2        –2       –2        0      0      0      0       0

Γvib   15     1      –1          –1       1       –3    –1       5      5       3

  

D4h E 2C4 C2(C 4
2 ) 2C2

′ 2C2
′′ i 2S4 σ h 2σ v 2σ d

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 ,  z2

A2g 1 1 1 −1 −1 1 1 1 −1 −1 Rz

B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2 − y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy
Eg 2 0 −2 0 0 2 0 −2 0 0 (Rx , Ry ) (xz, yz)
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z
B1u 1 −1 1 1 −1 −1 1 −1 −1 1
B2u 1 −1 1 −1 1 −1 1 −1 1 −1
Eu 2 0 −2 0 0 −2 0 2 0 0 (x,  y)

Vibrations of the trans-[CoCl2N4] group

_ On p. 293 of Cotton’s text, he gives 
2A1g, B1g, B2g, Eg, 2A2u, B1u, 3Eu

This should be 
2A1g, B1g, B2g, Eg, 2A2u, B2u, 3Eu

Allowedness w/ Vibronic Coupling

Use info. with Qualitative Energy  
Diagram to assign spectrum

Electronic 
Transition

Polarization 
   z              (x,y)

forbidden allowed

forbidden allowed

allowed allowed  

A1g → A2g

A1g → B2g

A1g → Eg



Graphical Summary
• Because of the Oh → D4h 

symmetry correlations, the  
specific configurations shown 
correspond to only the states 
shown - even in Oh . 

• The dashed transitions are 
dipole and vibronically 
forbidden in z-polarization. 

• The x,y-polarized transition 
at ~23,000 cm–1 is difficult to 
assign.  The  1B2g state should 
be relatively favored by the 
weaker ligand field of the Cl 
ligands, but there is less e–-e– 
repulsion in the 1A2g state. 1A1g

xy
x2-y2

xy
z2

1T1g

1T2g

1Eg

1B2g
1A2g

1Eg

xy

x2-y2
z2

xy

x2-y2
z2

Oh D4h

1A1g

  
Oh: E(1T2g ) − E(1T1g ) = 16B ≈ 17000 cm–1

Graphical Tools for getting relative 
Energies of States

 Energies of each configuration are 
given by counting the orbital 
energies, adding up the repulsions 
(Jij) and subtracting the exchange 
“stabilizations” (Kij) between like 
spins.

A Graphical Scheme for getting relative 
Energies of States

  

Egr =  2εa + 2εb + Ja,a + Jb,b + 4Ja,b − 2Ka,b

Eex
(3) =  2εa + εb + εc + Ja,a + 2Ja,b + 2Ja,c + Jb,c − Ka,b + Ka,c( ) − Kb,c

Eex
A =  2εa + εb + εc + Ja,a + 2Ja,b + 2Ja,c + Jb,c − Ka,b + Ka,c( )

Eex
B =  2εa + εb + εc + Ja,a + 2Ja,b + 2Ja,c + Jb,c − Ka,b + Ka,c( )

Eex
A+B + Eex

A−B = Eex
A + Eex

B   ;  but Eex
A+B = Eex

(3)  and Eex
A−B = Eex

(1)

∴Eex
(1) = Eex

A + Eex
B − Eex

(3)

Eex
(1) = 2εa + εb + εc + Ja,a + 2Ja,b + 2Ja,c + Jb,c − Ka,b + Ka,c( ) + Kb,c

Eex
(1) − Eex

(3) = +2Kb,c

A Graphical Scheme for getting relative 
Energies of States



Complex d-orbital J and K’s

 The Coulomb (Jij) 
and exchange 
(Kij) integrals 
shown here can 
often be used to 
calculate state 
energy 
differences.

For 1st  row transition metals, Racah parameters B  and C  have typical ranges shown.  
(State energy differences don’t involve A .) 

  

J0,0                                                    A+ 4B + 3C
J2,2 = J−2,−2 = J2,−2                           A+ 4B + 2C
J2,1 = J−2,−1 = J2,−1 = J−2,1               A− 2B + C
J2,0 = J−2,0                                        A− 4B + C
J1,1 = J−1,−1 = J1,−1                           A+ B + 2C
J1,0 = J−1,0                                        A+ 2B + C
K1,−1                                             6B + 2C
K2,−2                                    C
K2,1 = K−2,−1                                6B + C
K2,−1 = K−2,1                        C
K2,0 = K−2,0                                    4B + C
K1,0 = K−1,0                                   B + C

B ≈ 650 −1100 cm−1 C ≈ 2500 − 5500 cm−1

Slater-Condon and Racah Parameters

  

The "Slater-Condon parameters" are defined by

F k ≡ e2 r1
2

0

∞

∫ r2
2

0

∞

∫
r<

k

r>
k+1

Rnl (r1)
2

Rnl (r2 )
2

dr2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dr1   ;   
r<

k

r>
k+1

=

r1
k

r2
k+1

 if  r2 > r1

r2
k

r1
k+1

 if  r1 > r2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

and (in the d-shell):  F0 ≡ F 0  , F2 =
F 2

49
 , F4 =

F 4

441
The "Racah Parameters" are related to the Slater-Condon parameters by

A = F0 − 49F4

B = F2 − 5F4

C = 35F4

Example: B parameter for V3+

3F state:            |3F ; 3 1⟩ = | 2+1+⟩ 
E(3F) = 2hd + J2,1 – K2,1  
= 2hd + (A – 2B + C) – (6B + C)  
= 2hd + A – 8B 

3P state:  
|3P ; 1 1 ⟩ = √3/5 |1

+ 0+ ⟩ – √2/5 |2
+ –1+ ⟩   

E(1+ 0+) = 2hd + J1,0 – K1,0  
= 2hd + (A + 2B + C) – (B + C)  
= 2hd + A + B 
E(2+ –1+) = 2hd + J2,–1 – K2,–1  
= 2hd + (A – 2B + C) – C  
= 2hd + A – 2B 
E(3P) = E(1+ 0+) + E(2+ –1+) – E(3F)  
= 2hd + A + 7B 

E(3P) – E(3F) = 15B = 12,924 cm–1       
B = 861.7 cm–1

Energies 
of d2 and 
d3 Terms

N Term Symbol Slater–Condon 

Expression 

Racah Expression 

 3F F0 – 8F2 – 9F4 A – 8B  

 3P F0 + 7F2 – 84F4 A + 7B  

d2 1G  F0 + 4F2 + F4 A + 4B + 2C  

 1D  F0 – 3F2 + 36F4 A – 3B + 2C  

 1S  F0 + 14F2 – 126F4 A + 14B + 7C  

 4F 3F0 – 15F2 – 72F4 3A – 15B  

 4P 3F0 – 147F4 3 A  

 2H  3F0 – 6F2 – 12F4 3A – 6B + 3C  

d3 
2P 3F0 – 6F2 – 12F4 3A – 6B + 3C  

 2G  3F0 – 11F2 + 13F4 3A – 11B + 3C  

 2F 3F0 + 9F2 – 87F4 3A + 9B + 3C  

 2D 
 = 3, + 
 = 1, – 

3F0 + 5F2 + 3F4 
± (193F2

2 – 1650F2F4 
+ 8325F4

2)1/2 

3A – 3B + 5C  
± (193B2 + 8BC + 4C2)1/2 

 
 



Tanabe-Sugano ∆E’s and the Scheme

Worked out details: singlet states example for 
the high-field limit for the d6 case.

  

1A1g :  6εt2g
+ 3Jxy,xy +12Jxy,xz − 6Kxy,xz

1T1g :  5εt2g
+ εeg

+ 2Jxy,xy + J
x2 − y2 ,xy

+12Jxy,xz − 6Kxy,xz + K
x2 − y2 ,xy

1T2g :  5εt2g
+ εeg

+ 2Jxy,xy + J
xy,z2 + 8Jxy,xz + 4J

xz ,z2 − 4Kxy,xz − 2K
xz ,z2 + K

xy,z2

E(1T2g ) − E(1T1g ) =

J
xy,z2 − J

x2 − y2 ,xy( ) + 4 J
xz ,z2 − Jxy,xz( ) + 2 Kxy,xz − K

xz ,z2( ) + K
xy,z2 − K

x2 − y2 ,xy( )
= −8B + 4(4B) + 2(3B − B) + (4B − 0) = 16B

Note: The exchange contributions are positive because these are 
the singlet states - see the diagram - back four slides!

Some Coulomb and Exchange Integrals

 The Coulomb (Jij) 
and exchange 
(Kij) integrals 
shown here can 
often be used to 
calculate state 
energy 
differences.

  

       Coulomb and Exchange Integrals                     Racah Parameters
Jxy,xy = Jxz ,xz = J yz , yz = J

z2 ,z2 = J
x2 − y2 ,x2 − y2     A+ 4B + 3C

Jxz , yz = Jxy, yz = Jxy,xz = J
x2 − y2 , yz

= J
x2 − y2 ,xz

    A− 2B + C

J
xy,z2 = J

x2 − y2 ,z2                                                A− 4B + C

J
yz ,z2 = J

xz ,z2                                                     A+ 2B + C

J
x2 − y2 ,xy

                                                           A+ 4B + C

Kxy, yz = Kxz , yz = Kxy,xz = K
x2 − y2 , yz

= K
x2 − y2 ,xz

3B + C     

K
xy,z2 = K

x2 − y2 ,z2                                               4B + C     

K
yz ,z2 = K

xz ,z2                                                    B + C      

K
x2 − y2 ,xy

                                                           C           

∫ϕxz (1)ϕxy (2) 1 r12( )ϕ yz (1)ϕ
x2 − y2 (2)dτ1dτ2       −3B        

B ≈ 650 −1100 cm−1 C ≈ 2500 − 5500 cm−1

For 1st  row transition metals, Racah parameters B  and C  have typical ranges shown.  
(State energy differences don’t involve A .) 

CrIII d-d spectra

[Cr(H2O)6]
3+

[Cr(en)3]
3+

300 350 400 450 500 550 600 650 700

1742224570
21834

28490

λ (nm)

Nonlinear Molecules in orbitally 
degenerate states are inherently unstable 
with respect to distortion. 

We can write the ground state electronic 
energy, E0(Q), as a series expansion in 
each normal coordinate, Q: 

Q - belongs to non-totally symmetric rep.

Jahn-Teller Theorem

E0 (Q) = E0
0 + E0

1(Q)Q + E0
2 (Q)Q2 + ...



Comments Regarding Stable Structures

For stable molecules.

• Movement of the nuclei along a non-totally 
symmetric normal coordinate represents an 
“instantaneous distortion” of the molecule. 

• Normal coordinates are defined in terms of the 
molecular geometry as it exists in at least a local 
energy minimum as far as nuclear positions are 
concerned.  At a local minimum,

What are the conditions under which the first 
term of the power series expansion is nonzero?In 
other words, when is the molecule is not stable 
with respect to distortion?

•

E0
1(0) = ∂E

∂Q
⎛
⎝⎜

⎞
⎠⎟ 0

= 0

Symmetry Constraints on  
Structural Stability

Ground state energy, E, is given by: E = Ψ0
∗∫ H  Ψ0dτ

Consider 
∂E
∂Q

⎛
⎝⎜

⎞
⎠⎟ 0

, where Q does not  

belong to the totally symmetric representation, ΓA1
:

 
∂E
∂Q

⎛
⎝⎜

⎞
⎠⎟ 0

=
∂Ψ0

∗

∂Q

⎛

⎝
⎜

⎞

⎠
⎟

0
∫ H  Ψ0dτ + Ψ0

∗∫ H
∂Ψ0

∂Q
⎛

⎝
⎜

⎞

⎠
⎟

0

dτ

+ Ψ0
∗∫

∂H
∂Q

⎛
⎝⎜

⎞
⎠⎟ 0

Ψ0dτ

The first two terms vanish, by symmetry.

∴  
∂E
∂Q

⎛
⎝⎜

⎞
⎠⎟ 0

= Ψ0
∗∫

∂H
∂Q

⎛
⎝⎜

⎞
⎠⎟ 0

Ψ0dτ ~ Γ0 ⊗Γ ∂H
∂Q

⎛
⎝⎜

⎞
⎠⎟ 0

⊗Γ0

   

   H  —  belongs to totally symmetric representation;

  
∂H
∂Q

—  belongs to ΓQ

  
⇒

∂E
∂Q

⎛
⎝⎜

⎞
⎠⎟ 0

 will be nonzero iff Γ0 ⊗Γ0⎡⎣ ⎤⎦
+

 contains ΓQ

  

If the ground state is nondegenerate, Γ0 ⊗Γ0⎡⎣ ⎤⎦
+

 
is the totally symmetric representation.

∴ ∂E
∂Q

⎛
⎝⎜

⎞
⎠⎟ 0

= 0 if ground state is nondegenerate, 

                    (integrand will not belong to ΓA1
)

Summary: J-T active modes
If the ground state, Ψ0, is orbitally 

degenerate and transforms as Γ0, then 
then the molecule will distort to remove 
the degeneracy. 

Possible symmetries of the distortion are 
found by taking the symmetric direct 
product: 

(Totally symmetric modes are ignored.)

[Γ0 ⊗ Γ0 ]+



Examples
★ The best known J-T unstable molecules are Cu

II
 d

9
 

“octahedral” cases.  What is the expected distortion 
coordinate? 

★ “Tetrahedral” Cu
II
 complexes are common.  Are they 

really tetrahedral? 
★ Are octahedral Ni

II
 complexes J-T unstable, (i) in their 

ground states?, (ii) in excited states of the ground 
configuration? 

★ Is cyclobutadiene J-T unstable, (i) in its ground state?, (ii) 
in excited states of the ground configuration? 

★ What is the expected structure of the CrN3
6–

 ion (in 
Ca3(CrN3))? 

★ Would an octahedral V
III

 complex be expected to exhibit a 
J-T distortion?

  

O E 8C3
3C2

(= C4
2 )

6C4 6C2

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 –1 –1
E 2 –1 2 0 0 (2z2 – x2 − y2 ,x2 − y2 )
T1 3 0 –1 1 –1 (Rx , Ry , Rz );  (x,  y,  z)
T2 3 0 –1 –1 1 (xy,xz, yz)

D4 E 2C4 C2(C 4
2 ) 2C2

′ 2C2
′′

A1 1 1 1 1 1 x2 + y2,  z2

A2 1 1 1 –1 –1 z,  Rz
B1 1 –1 1 1 –1 x2 − y2

B2 1 –1 1 –1 1 xy
E 2 0 –2 0 0 (x,  y),  (Rx ,Ry ) (xz, yz)

[E⊗ E]– 1 1 1 −1 −1 = A2
[E⊗ E]+ 3 −1 3 1 1 = A1⊕ B1⊕ B2

Tetrahedral Group: Td

  

Td E 8C3 3C2 6S4 6σ d

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 –1 –1
E 2 –1 2 0 0 (2z2 – x2 − y2 , x2 − y2 )
T1 3 0 –1 1 –1 (Rx , Ry , Rz )
T2 3 0 –1 –1 1 (x,  y,  z) (xy,xz, yz)

D3h

  

D3h E 2C3 3C2 σ h 2S3 3σ v

A1
′ 1 1 1 1 1 1 x2 + y2 , z2

A2
′ 1 1 −1 1 1 −1 Rz

′E 2 −1 0 2 −1 0 (x,  y) (x2 − y2 ,xy)
A1
′′ 1 1 1 −1 −1 −1

A2
′′ 1 1 −1 −1 −1 1 z
′′E 2 −1 0 −2 1 0 (Rx , Ry ) (xz, yz)



Examples - Some Answers
★ CuII d9 “octahedral” cases:                     

[Eg ⊗ Eg]+ = A1g ⊕ Eg 

★ CuII d9 “tetrahedral” cases:                    
[T2 ⊗ T2]+ = A1 ⊕ E ⊕ T2 

★ CrN36– ion:                                                           
[E” ⊗ E”]+ =  A1g ⊕ E’ 

★ VIII complex:                                      
Ground State is [T2g ⊗ T2g]– = 3T1g                  
[T1g ⊗ T1g]+ = A1g ⊕ Eg ⊕ T2g


