Electronic-Vibrational Coupling

Colors of Co(III) solutions

Vibronic Coupling

- ★ Because they have g g character, the d-d transitions of complexes of the transition metals are "forbidden" (LaPorte forbidden).
- ★ Complexes with noncentrosymmetric coordination geometries (e.g., tetrahedral) have more intense *d*-*d* spectra.
- ★ Spectra in centrosymmetric (e.g., octahedral) complexes "acquire intensity" via <u>vibronic coupling</u>.

The total molecular wavefunction can usually be approximated as a product of electronic, vibrational, and rotational parts: $\mathcal{H}\Psi$ It is good first approximation to assume that electronic, vibrational, and rotational motion can be separated: $\mathcal{H} \approx \mathcal{H}_{elec.} + \mathcal{H}_{vib.} + \mathcal{H}_{rot.}$ In this approximation, the wavefunction is a product: $\Psi = \Psi_{elec.}\Psi_{vib.}\Psi_{rot.}$ $\mathcal{H}\Psi = \Psi_{vib.}\Psi_{rot.}(\mathcal{H}_{elec.}\Psi_{elec.}) +$ $+\Psi_{elec.}\Psi_{rot.}(\mathcal{H}_{vib}\Psi_{vib.}) + \Psi_{elec.}\Psi_{vib.}(\mathcal{H}_{rot.}\Psi_{rot.})$ $\mathcal{H}\Psi = (E_{elec.} + E_{vib.} + E_{rot.})\Psi$ However, the "separability" is not exact.

More accurately, $\mathcal{H} \approx \mathcal{H}_{elec.} + \mathcal{H}_{vib.} + \mathcal{H}_{rot.} + \mathcal{H}_{elec-vib}$

Including the effects of coupling demands a modified wavefunction. In the simplest approximation, $\psi_{elec.}$ and $\psi_{vib.}$ not separable.

:.Consider the product, $\psi_{elec.}\psi_{vib.}$, for examining selection rules:

$$\int \psi_{elec}^{gnd} \psi_{vib}^{gnd} \, \hat{\mathbf{d}} \psi_{elec}^{ex} \psi_{vib}^{ex} d\tau \stackrel{?}{=} 0$$

 $\Psi_{vib.}^{gnd}$ generally belongs to totally symmetric rep. (otherwise, "hot bands" are involved). \therefore consider,

 $\int \psi_{elec.}^{gnd} \hat{\mathbf{d}} \psi_{elec.}^{ex} \psi_{vib.}^{ex} d\tau = 0$

Vibronic Coupling in $[trans-Co(en)_2Cl_2]^+$

- Spectra: Fig. 9.13 in Cotton (solution spectrum is nearly indistinguishable from [*trans*-Co(NH₃)₄Cl₂]⁺)
- Virtual D_{4h} symmetry, d^6 , low-spin
- In approximate O_h symmetry, ground state configuration is $(t_{2g})^6$, ${}^1A_{1g}$ state.
- Dipole allowed transitions? Lowest energy singlets? See Tanabe-Sugano diagram.
- O_h to D_{4h} correlations?
- Vibrations of the [*trans*-CoCl₂N₄] grouping

D_{4h}	Ε	$2C_4$	$C_2(C_4^2)$	$2C_2'$	$2C_{2}''$	i	$2S_4$	$\sigma_{_h}$	$2\sigma_v$	$2\sigma_d$		
Alg	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	R _z	
B_{1g}	1	-1	1	1	-1	1	-1	1	1	-1		$x^2 - y^2$
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1		xy
E_g	2	0	-2	0	0	2	0	-2	0	0	(R_x, R_y)	(xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	Z	
B_{1u}	1	-1	1	1	-1	-1	1	-1	-1	1		
B_{2u}	1	-1	1	-1	1	-1	1	-1	1	-1		
E_u	2	0	-2	0	0	-2	0	2	0	0	(x, y)	
Γ_{all}	21	3	-3	-3	-1	-3	-1	5	5	3		
Γ_{t+r}	6	2	-2	-2	-2	0	0	0	0	0		
Γ_{vib}	15	1	-1	-1	1	-3	-1	5	5	3		

Vibrations of the *trans*-[CoCl₂N₄] group

- On p. 293 of Cotton's text, he gives $2A_{1g}$, B_{1g} , B_{2g} , E_g , $2A_{2u}$, B_{1u} , $3E_u$

This should be $2A_{1g}$, B_{1g} , B_{2g} , E_g , $2A_{2u}$, B_{2u} , $3E_u$

Allowedness w/ Vibronic Coupling

Electronic	Polari	zation
Transition	Z	(x,y)
$A_{1g} \to A_{2g}$	forbidden	allowed
$A_{1g} \rightarrow B_{2g}$	forbidden	allowed
$A_{1g} \rightarrow E_g$	allowed	allowed

Use info. with Qualitative Energy Diagram to assign spectrum

A Graphical Scheme for getting relative
Energies of States
$$E_{gr} = 2\varepsilon_{a} + 2\varepsilon_{b} + J_{a,a} + J_{b,b} + 4J_{a,b} - 2K_{a,b}$$

$$E_{ex}^{(3)} = 2\varepsilon_{a} + \varepsilon_{b} + \varepsilon_{c} + J_{a,a} + 2J_{a,b} + 2J_{a,c} + J_{b,c} - (K_{a,b} + K_{a,c}) - K_{b,c}$$

$$E_{ex}^{A} = 2\varepsilon_{a} + \varepsilon_{b} + \varepsilon_{c} + J_{a,a} + 2J_{a,b} + 2J_{a,c} + J_{b,c} - (K_{a,b} + K_{a,c})$$

$$E_{ex}^{B} = 2\varepsilon_{a} + \varepsilon_{b} + \varepsilon_{c} + J_{a,a} + 2J_{a,b} + 2J_{a,c} + J_{b,c} - (K_{a,b} + K_{a,c})$$

$$E_{ex}^{A+B} + E_{ex}^{A-B} = E_{ex}^{A} + E_{ex}^{B} ; \text{ but } E_{ex}^{A+B} = E_{ex}^{(3)} \text{ and } E_{ex}^{A-B} = E_{ex}^{(1)}$$

$$\therefore E_{ex}^{(1)} = 2\varepsilon_{a} + \varepsilon_{b} + \varepsilon_{c} + J_{a,a} + 2J_{a,b} + 2J_{a,c} + J_{b,c} - (K_{a,b} + K_{a,c}) + K_{b,c}$$

$$E_{ex}^{(1)} = 2\varepsilon_{a} + \varepsilon_{b} + \varepsilon_{c} + J_{a,a} + 2J_{a,b} + 2J_{a,c} + J_{b,c} - (K_{a,b} + K_{a,c}) + K_{b,c}$$

$$E_{ex}^{(1)} - E_{ex}^{(3)} = +2K_{b,c}$$

Complex d-orbital J and K's

$J_{0,0}$	A + 4B + 3C	
$J_{22} = J_{22} = J_{22}$	A + 4B + 2C	
$J_{2,1} = J_{-2,-1} = J_{2,-1} = J_{-2,1}$	A - 2B + C	The Coulomb (J_{ij})
$J_{2.0} = J_{-2.0}$	A - 4B + C	and exchange
$J_{11} = J_{-1-1} = J_{1-1}$	A + B + 2C	
$J_{1,0} = J_{-1,0}$	A + 2B + C	(K_{ij}) integrals
<i>K</i> _{1,-1}	6B + 2C	shown here can
K ₂₂	С	often he used to
$K_{21} = K_{-2-1}$	6B + C	
$K_{2,1} = K_{2,1}$	С	calculate state
$K_{20} = K_{-20}$	4B+C	energy
$K_{1,0} = K_{-1,0}$	B + C	differences.
$B \approx 650 - 1100 \text{ cm}^{-1}$	$C \approx 2500 - 5500 \text{ cm}^{-1}$	

For 1st row transition metals, Racah parameters B and C have typical ranges shown. (State energy differences don't involve A.)

Slater-Condon and Racah Parameters

The "Slater-Condon parameters" are defined by

$$= e^{2} \int_{0}^{\infty} r_{1}^{2} \left[\int_{0}^{\infty} r_{2}^{2} \frac{r_{<}^{k}}{r_{>}^{k+1}} |R_{nl}(r_{1})|^{2} |R_{nl}(r_{2})|^{2} dr_{2} \right] dr_{1} \quad ; \quad \frac{r_{<}^{k}}{r_{>}^{k+1}} = \begin{cases} \frac{r_{1}^{k}}{r_{2}^{k+1}} & \text{if } r_{2} > r_{1} \\ \frac{r_{2}^{k}}{r_{1}^{k+1}} & \text{if } r_{1} > r_{2} \end{cases}$$

and (in the *d*-shell): $F_{0} \equiv F^{0}$, $F_{2} = \frac{F^{2}}{49}$, $F_{4} = \frac{F^{4}}{441}$
The "Racah Parameters" are related to the Slater-Condon parameters by
 $A = F_{0} - 49F_{4}$
 $B = F_{2} - 5F_{4}$
 $C = 35F_{4}$

\checkmark
Energies of d ² and d ³ Terms

 F^{k}

Ν	Term Symbol	Slater–Condon Expression	Racah Expression
	³ F	$F_0 - 8F_2 - 9F_4$	A - 8B
	³ P	$F_0 + 7F_2 - 84F_4$	A + 7B
d ²	^{1}G	$F_0 + 4F_2 + F_4$	A + 4B + 2C
	^{1}D	$F_0 - 3F_2 + 36F_4$	A - 3B + 2C
	^{1}S	$F_0 + 14F_2 - 126F_4$	A + 14B + 7C
	${}^{4}F$	$3F_0 - 15F_2 - 72F_4$	3A - 15B
	⁴ P	$3F_0 - 147F_4$	3 A
	^{2}H	$3F_0 - 6F_2 - 12F_4$	3A - 6B + 3C
d^3	² P	$3F_0 - 6F_2 - 12F_4$	3A - 6B + 3C
	^{2}G	$3F_0 - 11F_2 + 13F_4$	3A - 11B + 3C
	^{2}F	$3F_0 + 9F_2 - 87F_4$	3A + 9B + 3C
	$\lambda^{2}D$ $\lambda = 3, +$ $\lambda = 1 -$	$3F_0 + 5F_2 + 3F_4 \pm (193F_2^2 - 1650F_2F_4 + 8325F_4^2)^{1/2}$	$\frac{3A - 3B + 5C}{\pm (193B^2 + 8BC + 4C^2)^{1/2}}$

Tanabe-Sugano ΔE 's and the Scheme

Worked out details: singlet states example for the high-field limit for the d⁶ case.

$$\begin{split} ^{1}A_{1g} &: 6\varepsilon_{t_{2g}} + 3J_{xy,xy} + 12J_{xy,xz} - 6K_{xy,xz} \\ ^{1}T_{1g} &: 5\varepsilon_{t_{2g}} + \varepsilon_{e_{g}} + 2J_{xy,xy} + J_{x^{2}-y^{2},xy} + 12J_{xy,xz} - 6K_{xy,xz} + K_{x^{2}-y^{2},xy} \\ ^{1}T_{2g} &: 5\varepsilon_{t_{2g}} + \varepsilon_{e_{g}} + 2J_{xy,xy} + J_{xy,z^{2}} + 8J_{xy,xz} + 4J_{xz,z^{2}} - 4K_{xy,xz} - 2K_{xz,z^{2}} + K_{xy,z^{2}} \\ E(^{1}T_{2g}) - E(^{1}T_{1g}) = \\ \left(J_{xy,z^{2}} - J_{x^{2}-y^{2},xy}\right) + 4\left(J_{xz,z^{2}} - J_{xy,xz}\right) + 2\left(K_{xy,xz} - K_{xz,z^{2}}\right) + \left(K_{xy,z^{2}} - K_{x^{2}-y^{2},xy}\right) \\ &= -8B + 4(4B) + 2(3B - B) + (4B - 0) = 16B \end{split}$$

Note: The exchange contributions are <u>positive</u> because these are the <u>singlet</u> states - see the diagram - back four slides!

Some Coulomb and Exchange Integrals

Coulomb and Exchange Integrals	Racah Parameters	
$J_{xy,xy} = J_{xz,xz} = J_{yz,yz} = J_{z^2,z^2} = J_{x^2-y^2,x^2-y^2}$	A + 4B + 3C	
$J_{xz,yz} = J_{xy,yz} = J_{xy,xz} = J_{x^2-y^2,yz} = J_{x^2-y^2,xz}$	A - 2B + C	The Coulomb (J_{ij})
$J_{xy,z^2} = J_{x^2 - y^2, z^2}$	A - 4B + C	and exchange
$J_{yz,z^2} = J_{xz,z^2}$	A + 2B + C	(K_{ii}) integrals
$J_{x^2-y^2,xy}$	A + 4B + C	shown here can
$K_{xy,yz} = K_{xz,yz} = K_{xy,xz} = K_{x^2-y^2,yz} = K_{x^2-y^2,xz}$	3B+C	often be used to
$K_{xy,z^2} = K_{x^2 - y^2, z^2}$	4B+C	calculate state
$K_{yz,z^2} = K_{xz,z^2}$	B + C	calculate state
$K_{x^2-y^2,xy}$	С	energy
$\int \varphi_{xz}(1)\varphi_{xy}(2)(1/r_{12})\varphi_{yz}(1)\varphi_{x^2-y^2}(2)d\tau_1 d\tau_2$	-3B	differences.
$B \approx 650 - 1100 \text{ cm}^{-1}$	$C \approx 2500 - 5500 \text{ cm}^{-1}$	
For 1 st row transition metals, Racah para (State energy differences don't involve)	ameters B and C ha	ve typical ranges shown.

Jahn-Teller Theorem

Nonlinear Molecules in orbitally degenerate states are inherently unstable with respect to distortion.

We can write the ground state electronic energy, $E_0(Q)$, as a series expansion in each normal coordinate, Q:

 $E_0(Q) = E_0^0 + E_0^1(Q)Q + E_0^2(Q)Q^2 + \dots$

Q - belongs to non-totally symmetric rep.

Comments Regarding Stable Structures

- Movement of the nuclei along a non-totally symmetric normal coordinate represents an "instantaneous distortion" of the molecule.
- Normal coordinates are defined in terms of the molecular geometry as it exists in at least a local energy minimum as far as nuclear positions are concerned. At a local minimum,

$$E_0^1(0) = \left(\frac{\partial E}{\partial Q}\right)_0 = 0$$

For stable molecules.

• What are the conditions under which the first term of the power series expansion is nonzero?In other words, when is the molecule is not stable with respect to distortion?

Symmetry Constraints on Structural Stability

Ground state energy, *E*, is given by: $E = \int \Psi_0^* \mathcal{H} \Psi_0 d\tau$

Consider $\left(\frac{\partial E}{\partial Q}\right)_0$, where Q does *not* belong to the totally symmetric representation, Γ_A :

$$\begin{pmatrix} \frac{\partial E}{\partial Q} \end{pmatrix}_0 = \int \left(\frac{\partial \Psi_0^*}{\partial Q} \right)_0 \mathcal{H} \Psi_0 d\tau + \int \Psi_0^* \mathcal{H} \left(\frac{\partial \Psi_0}{\partial Q} \right)_0 d\tau \\ + \int \Psi_0^* \left(\frac{\partial \mathcal{H}}{\partial Q} \right)_0 \Psi_0 d\tau$$

The first two terms vanish, by symmetry.

$$\therefore \left(\frac{\partial E}{\partial Q}\right)_0 = \int \Psi_0^* \left(\frac{\partial \boldsymbol{\mathcal{H}}}{\partial Q}\right)_0 \Psi_0 d\tau \sim \Gamma_0 \otimes \Gamma_{\left(\frac{\partial \boldsymbol{\mathcal{H}}}{\partial Q}\right)_0} \otimes \Gamma_0$$

 $\begin{aligned} \mathcal{H} & - \text{ belongs to totally symmetric representation;} \\ & \frac{\partial \mathcal{H}}{\partial Q} - \text{ belongs to } \Gamma_Q \\ \Rightarrow \left(\frac{\partial E}{\partial Q}\right)_0 \text{ will be nonzero iff } \left[\Gamma_0 \otimes \Gamma_0\right]^+ \text{ contains } \Gamma_Q \end{aligned}$

If the ground state is *non*degenerate, $[\Gamma_0 \otimes \Gamma_0]^+$ *is the totally symmetric representation*.

$$\therefore \left(\frac{\partial E}{\partial Q}\right)_0 = 0 \text{ if ground state is nondegenerate,}$$

(integrand will not belong to Γ_{A_1})

Summary: J-T active modes

If the ground state, Ψ_0 , is <u>orbitally</u> <u>degenerate</u> and transforms as Γ_0 , then then the molecule will distort to remove the degeneracy.

Possible symmetries of the distortion are found by taking the symmetric direct product: $[\Gamma_0 \otimes \Gamma_0]^+$

(Totally symmetric modes are ignored.)

Examples

- \star The best known J-T unstable molecules are Cu^{II} d⁹ "octahedral" cases. What is the expected distortion coordinate?
- \star "Tetrahedral" Cu^{II} complexes are common. Are they really tetrahedral?
- * Are octahedral Ni^{II} complexes J-T unstable, (i) in their ground states?, (ii) in excited states of the ground configuration?
- ★ Is cyclobutadiene J-T unstable, (*i*) in its ground state?, (*ii*) in excited states of the ground configuration?
- \star What is the expected structure of the CrN₃⁶⁻ ion (in $Ca_3(CrN_3))?$
- \star Would an octahedral V^{III} complex be expected to exhibit a J-T distortion?

0 E	E 8	C_3	$3C_2$ $(=C_4^2)$	$6C_4$	$6C_2$	
A ₁ 1	l	1	1	1	1	$x^2 + y^2 + z^2$
$A_2 \mid 1$	l	1	1	-1	-1	
<i>E</i> 2	2	-1	2	0	0	$(2z^2 - x^2 - y^2, x^2 - y^2)$
$T_1 = 3$	3	0	-1	1	-1	$(R_{x}, R_{y}, R_{z}); (x, y, z)$
$T_2 \mid 3$	3	0	-1	-1	1	(xy, xz, yz)
$\begin{array}{c} D_4\\ A_1\\ A_2\\ B_1\\ B_2\\ E\end{array}$	E 1 1 1 1 2	$2C_4$ 1 -1 -1 0	$C_2(C)$ 1 1 1 1 1 -2	² ₄) 20 -	$\frac{C_2}{1}$ 2 -1 -1 -1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5		1		1 1	1	- 1

 $x^{2} + y^{2}, z^{2}$

