
More on One-Dimensional Crystals 

Earlier, we saw earlier that the characters for the N irreducible representations of 

the one-dimensional translation group (TN) can be written as  
 

  

t t2 t3 tN 1 tN = E
(k ) e2 i (k •a) e2 i(k •2a) e2 i (k •3a) e 2 i(k •a) 1  

Where k takes on exactly N discrete values within the range -1 (2a) < k 1 (2a)  

and a is the unit cell length.  This compressed “table” tells us all we need to know to 

discuss functions that form a basis for any of the irreducible representations of the TN 

group.  For example, we know that if we operate on a function k  that forms a basis for 

the irreducible representation (k) with the translation operator t , the result can be read 

directly from the character table: 
 

t k = e
2 i (k a)

k . 
 

More generally, if we operate on k  with any of the translation operators tm , we obtain 
 

tm k = e
2 i(k ma)

k . 
 

It is also useful to note that the representation (-k) (with a corresponding basis function 

k ) yields eigenvalues that are just the complex conjugates 
 

t k = e
2 i( k a)

k    and   tm k = e
2 i( k ma )

k , 

 

where e2 i ( k a)
= (e2 i(k a) )*  and e2 i( k ma )

= (e2 i(k ma))* .  But, because the operator t  

simply shifts the chain by one unit cell length (a ) along the x - axis , this means that as 

functions that belong to the (k) and (-k) representations, k  and k  have the 

important properties: 
 

k (x+ a) = e2 i(k a)
k (x)  and  k (x + a) = e2 i( k a )

k (x) . (1) 

 



Looking at these relations, we see that if we take the complex conjugate of k , 

the resulting function will form a basis for (k): 
 

k
* (x + a) = e2 i (k a )

k
* (x)  which implies  t k

*
= e2 i(k a )

k
*

. 
 

Thus, we can conclude that k
*

= k .  The expressions (1) embody Bloch’s Theorem, 

and are a direct result of the underlying translational symmetry of the system. 

Any function k (x)  that obeys Bloch’s theorem can be written in the form: 
 

k (x) = e
2 ikxuk (x)  
 

where uk (x)  is a periodic function that is identical in each unit cell of the crystal (i.e.., 

  
uk (x) = uk (x + a) = uk (x + 2a) =  ) and e2 ikx  is a wave-like factor.  With this form in 

mind, and making use of the fact that any electronic or vibrational wavefunction k  will 

be degenerate with it’s complex conjugate k , we can examine the characteristics of the 

real function k + k  which varies sinusoidally with x .  The plot below shows a Bloch 

function for k = 1 8a  and an arbitrary choice of the function uk (x) . 

 
 

We can see that because of the modulation provided by the factor of e2 ikx , the function 

shown has an effective wavelength that is just =1 k = 8a .   The number of irreducible 



representations, N , is just equal to the number of unit cells in the crystal, which we 

consider to be an arbitrarily large number.  The variable k  is then quasi-continuous and is 

often referred to as the wavevector of the Bloch function in question.  It is nevertheless 

useful to remember that k takes on exactly N  allowed values in the range 

-1 (2a) < k 1 (2a) .  This range of unique irreducible representations is referred to as 

the First Brillouin Zone or sometimes just the Brillouin Zone(BZ).  Occasionally, it is 

convenient to consider the redundant representations for which k  takes on values outside 

this range, but one should remember that for any value of k  greater than 1 (2a)  or less 

than -1 (2a)  there is an equivalent irreducible representation labeled by  k  within the 

first BZ that is just found by computing  k = k + n(1 a)  where n  is the appropriate 

integer.   



Translation Groups in Three Dimensions 

We have seen that for one-dimensional crystals, the information conveyed by 

specifying the wavevector k  (with an awareness of Bloch’s theorem) is entirely 

equivalent to the information contained in the character table of the TN group.  For three-

dimensional crystals, the situation is analogous.  The set of translation operations now 

includes each of the operations in what we might call the TN
 a , TN

 b , and TN
 c  groups.  

These groups respectively involve translation operations along the a,  b,  and c  crystal 

directions.  The full three-dimensional translation group (TN
3D ) includes operations that 

arise from taking the product of operations from each of the one-dimensional translation 

groups TN
 a , TN

 b , and TN
 c .  That is, TN

3D  is the direct product group TN
 a TN

 b TN
 c  

(There is nothing mysterious about this, in the same way we could say that D3h  is the 

direct product group obtained from C3v  and Cs : D3h = C3v Cs— every operation in 

D3h  can be written as the product of operations from C3v  and Cs).  It is easy to see that 

every translation operation in TN
3D  commutes with every other operation (as in the 

example depicted in Figure 3). 
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Figure 3.  The commutation of 3-dimensional translation operations is illustrated. 



Because the structure of the three-dimensional translation group is fundamentally 

analogous to the one-dimensional translation group, we will dispense with a discussion of 

the very cumbersome character table for TN
3D .  In general, the irreducible representations 

of TN
3D  will behave in a way that parallels those for the one-dimensional translation 

group.  For example, a function l,m,n  which belongs to l  of the TN
 a  group,  to m  of 

the TN
 b  group, and n  of the TN

 c  group will transform in a predictable way when 

operated upon by a three-dimensional translation operation: 
 

tR l,m,n =
u l+ v m+w n

j = e
(2 i N) (u l+v m+w n)

l ,m,n

where R = ua + vb + wc
 

 

Just as we introduced the variable k in one-dimension, we can introduce a vector 

k for three dimensions.  Just as in one dimension,  k carries information about the 

irreducible representation in question for the three-dimensional translation group.  There 

is a three-dimensional generalization of Bloch’s Theorem: 
 

k (r +R) = e
2 ikR

k(r)  
 

where r  represents a position within the unit cell at the origin of our coordinate system, 

R  is a lattice vector between a pair of unit cells (R = ua + vb + wc ; u, v,  and w  are 

integers).  The dot product k R = kau + kbv + kcw , where the 3-dimensional wavevector 

k = kaa + kab + kac  lies within the first Brillouin Zone.  A fuller definition of k will 

be given below.  In two dimensions, Bloch’s theorem is of the same nature as for one and 

three dimensions, and we will find 2-D examples in our treatment below.  We emphasize 

that Bloch’s Theorem is purely the result of the translational symmetry of crystals and 

when we specify a wavevector k  we are merely providing a label for a particular 

irreducible representation of the three-dimensional translation group.



Applications of Bloch’s Theorem in One-Dimension 

We begin by using Bloch’s Theorem to solve for the Hückel orbitals and energies 

of polyacetylene.  We will use a procedure that is exactly analogous to that used for 

molecular systems.  First, we set up symmetry adapted linear combinations (SALCs) of 

the basis orbitals by use of projection 

operators.  We are considering the 

problem illustrated; there are two p  

orbitals per unit cell – each of which is 

related by a translation operation tm  to 

equivalent orbitals in unit cells which 

we will index with the label m .  Using 

the formal machinery of projection operators, we can operate on each of the basis orbitals 

1(0)  and 2(0)  with the projection operator for any representation to generate SALCs 

which extend over the entire chain (see Cotton, Sec. 6.2-6.3 and p. 145): 

  

ˆ P 1(0) =  (t 2)t 2 1(0) + (t 1)t 1
1(0) + (E)E 1(0)

                   + (t1)t1 1(0) + (t2)t2 1(0) +  

ˆ P 2(0) =  (t 2)t 2 2(0) + (t 1)t 1
2 (0) + (E)E 2(0)

                   + (t1)t1 2(0) + (t2 )t2 2(0) +  

 

Now, we know that tm 1(0) = 1(m) and tm 2(0) = 2(m)  and from Bloch’s theorem 

we know that for a representation with wavevector k, the characters can be directly 

written as ( tm ) = e2 ikma .  Thus, the above expressions may be converted to read: 

  

ˆ P 1(0) =  e 4 ika 1( 2) + e 2 ika 1( 1)+ 1(0) + e2 ika 1(1)

                   + e4 ika 1(2) +   = e2 ikma 1(m)
m= N 2+1

m=N 2

 

  

ˆ P 2 (0) =  e 4 ika 2 ( 2) + e 2 ika 2 ( 1) + 2 (0) + e2 ika 2 (1)

                   + e4 ika 2 (2) +   = e2 ikma 2(m)
m= N 2+1

m=N 2

 



where we note that the summations run over all N  cells of the chain.  SALCs for any 

system with translational symmetry must be written in just the same way, so that in 

practice there is never any reason to actually refer to projection operators at all.  SALCs 

that have been constructed using Bloch’s theorem as above are referred to as a set of 

Bloch basis functions.  We will label these as µ (k) , where µ  is a label that specifies the 

set of atomic orbitals with which we are concerned.  We will normalize these basis 

orbitals by dividing by N , and after changing the order of summation for typographical 

convenience, we write the general formula for a Bloch basis function: 
 

µ (k) = 1
N

e2 ikma
µ (m)

m= 0

N 1

 

If we were faced with the problem of solving the Hückel secular determinant for the 

polyacetylene system without the use of symmetry factorization (i.e., we use the basis set 

of individual atomic orbitals, 
  µ

(m);  µ = 1,2 and m =1,2,…, N ) then we would have to 

solve a 2N 2N  determinant.  The use of the symmetry adapted Bloch basis block 

factors this determinant into N  separate 2 2  determinants – one 2 2  determinant to 

solve for each of the N  allowed values of k.  This, in principle, is the kind of problem we 

face in all LCAO band structure calculations. 

Let’s set up the secular determinant we must solve for polyacetylene for each k. 

(This example proves to be simple enough that we can solve for the energies and obtain a 

solution in closed form.)  We will assume that there are two resonance integrals involved 

in this problem, 1  and 2 , which represent a stronger(weaker) interactions between  

orbitals that abut short(long) C-C bonds.  Now we must evaluate the matrix element, 

H12(k) , that involves the two Bloch basis orbitals for a given k: 
 



  

H12(k) = 1(k) H 2(k) = 1
N

e2 ikma 1(m)
m=0

N 1

H 1
N

e2 ikna 2 (n)
n=0

N 1

           = 1
N e 2 ikma

m =0

N 1

e2 ikna 1(m)H 2 (n)
n=0

N 1

= 1
N e2 ika (n m)

n=0

N 1

1(m) H 2(n)
m =0

N 1

 

This expression looks formidable, but can be made simpler.  It is important to realize that 

the integral 
  1(m)H 2 (n)  represents the Hamiltonian matrix element between 1(m)  

( 1  in the mth unit cell) and 2(n)  ( 2  in the nth unit cell); as such, it depends only the 

difference of the cell indices, n m .  As a result, each term in the double summation 

appears N  times.  (All N  terms with   n = 3,m = 0; n = 4,m = 1;  n = 5,m = 2; … are 

identical — this is more apparent by looking at the picture on the first page of this 

handout.)  We can then eliminate one summation, introduce the shorthand 

  1(m)H 2 (n) = H12
n m , and then change the remaining summation index by taking 

p = n m .  The matrix element then simplifies to read: 
 

H12(k) = e2 ika p

p= 0

N 1

H12
p . 

The algebraic manipulations of the matrix element are to this point quite general and have 

nothing to do with Hückel theory.  If we now introduce the assumptions of Hückel theory 

and use the notation above, we have the following: H12
0
= 1;  H12

1
= 2  and all other 

terms are zero.  We then obtain the simple expression: 

H12(k) = 1 + 2e
2 ika  

and the reader should verify that H21(k) = 1 + 2e
2 ika

= H12(k) .  As usual in Hückel 

theory we assign a value of  to the free atom p  orbitals energy, so H11
0
= H22

0
= .  

For the special case of polyacetylene, there are no near neighbor interactions between 

atoms 1 and 2 with their symmetry equivalents across cell boundaries, so for all  

p 0; H11
p
= H22

p
= 0 .  We then have the result 

 



H11(k ) = H22(k) = . 
 

We can set up and solve the general k dependent  2 2  secular determinant:  
 

H11(k) E H12(k)
H21(k) H22(k) E =

E 1 + 2e
2 ika

1 + 2e2 ika E
= 0  

 

which, after expansion, yields 
 

E± = ± 1
2
+ 2

2
+ 2 1 2 cos2 ka . 

 

For each of the N  allowed values of k , we obtain two eigenfunctions (chain 

orbitals) whose energies are given by the formula above.  A usual procedure for 

presenting such results is to plot the energies as a function of wavevector for the range 

0 k a , since the range a k 0  yields identical results (recall that 

k = k ,  so E(k) = E( k)).  We can obtain the eigenfunctions by a procedure that 

continues to follow that used in molecular problems.  For each k the chain orbitals are a 

linear combination of the two SALCs 1(k) and 2(k) : 
 

+ (k) = c1+ (k) 1(k) + c2+ (k) 2(k)

(k) = c1 (k) 1(k) + c2 (k) 2(k)
 

where the coefficients are found from the matrix equation: 
 

  

H11(k ) E± H12(k)
H21(k) H22(k) E±

 
 

 
 
c1±
c2±[ ] =

                          1
2 + 2

2 + 2 1 2 cos2 ka 1 + 2e 2 ika

1 + 2e
2 ika

1
2 + 2

2 + 2 1 2 cos2 ka

 

 
 

 

 
 
c1±
c2±[ ] = 0

 

These have particularly simple solutions when k = 0 or 1 2a : 
 

for k = 0 or k = 1 2a :  
              c1+ = c2 + (for E+ );  c1 = c2  (for E )  



We should stress that this does not mean that the crystal orbitals are the same for these 

two k  points — because the Bloch basis functions are different for these two points: 
 

  

µ(k = 0) = 1
N

e0
µ(m)

m=0

N 1

= 1
N

µ(0) + µ (1) + µ (2) +  [ ]

µ(k = 1 2a) = 1
N

( 1)m µ (m)
m= 0

N 1

= 1
N

µ (0) µ(1) + µ (2)  [ ]

 

Figure 4.  The Hückel   bands for polyacetylene, for two choices of 1  and 2 . 

Pictorial representations of the chain orbitals at k = 0 and 1 2a  reveal the origin 

of the energetic spreading (called dispersion) of the two bands.  Just as we would expect,  

the most stabilized orbital is the totally bonding combination we see at k = 0  and the 

highest energy orbital is the maximally antibonding orbital that is also at k = 0 .  Figure 4 

shows that neither of these orbitals are much affected by the presence of bond alternation 

in the chain because such an alternation stretches as many bonds as it shortens.  For the 



totally bonding chain orbital, this means that there are as many bonding interactions 

weakened as strengthened; for the completely antibonding orbital, as many antibonding 

interactions are increased as are decreased.  The situation is quite different at k = 1 2a .  

Here, one of the orbitals is bonding across the bonds which are shortened and 

antibonding for those bonds which are lengthened; for the other orbital, just the opposite 

holds.  The net result is that bond alternation introduces a band gap that is just equal to 

the energy difference between these two orbitals.  Since the chain has one  electron per 

carbon center, two carbon atoms per unit cell, and N  unit cells, there are 2N  electrons to 

be placed into the N  lowest energy chain orbitals.  This is exactly the number of chain 

orbitals there are in each energy band (since there is one orbital per band for each of the 

N  k points ).  Therefore, the lowest energy band is entirely filled, while the upper band 

is unoccupied when the chain is in its lowest electronic state.  The level to which 

electrons fill is called the Fermi level (EF).  Notice that if the polyacetylene chain did not 

exhibit bond alternation, there we would be no band gap and the chain would be metallic.  

However, a glance at Figure 4 shows that the distortion stabilizes occupied levels while 

destabilizing only the unoccupied levels, leading us to conclude that the bond alternation 

should be energetically favorable.  This special case of what is called Peierls theorem, 

which states that one dimensional systems are never metallic because they will always 

distort in such a way that a band gap is opened at the Fermi level. 

Let us consider a problem with a bit more complexity — one where an analytical 

solution for all the bands may not be accessible and where it will be advantageous to 

account for more than just the translational symmetry.  We will examine the -electron 

(Hückel) problem for p-polyacene, which is just a polymer of biphenyl groups linked as 

shown below.  Since there are six carbon atoms per unit cell we expect that without  
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further simplification, we will have to deal with k-dependent 6 6  secular determinants.  

However, if we use the proper basis of benzene fragment orbitals, the situation is 

considerably simplified.  The polyacene chain has two mirror planes of symmetry beyond 

the mirror in which all the atoms lie.  (Of course, it is the presence of the plane in which 

the atoms lie that enables us to separate the  electron problem from the  electron 

problem in the first place.)  These mirrors are respectively coincident with ( 1) and 

perpendicular to the chain axis ( 2).  The benzene fragment orbitals (Figure 5) are a 

convenient starting point for analyzing the polymer because they are symmetry-adapted 

with respect to these mirror planes.  Of the two mirror planes,  1 is the most useful for 

simplifying the problem before us.  Because 1 is contains the chain axis, any reflection 

of a Bloch orbital has no effect on its wavevector k.  The wavevector k specifies the 

behavior of a Bloch orbital with respect to translational symmetry and a reflection 

operation through 1 commutes with any translation operation.  Therefore, any Bloch 

orbital for this system can be labeled not only with a wavevector k, but also with a label 

that indicates its symmetry with respect to reflection through the 1 plane.  (The same 

argument applies to the plane in which the atoms lie.)  Of the labels attached to the 

benzene fragment orbitals, the first indicates the orbitals’ 1 reflection symmetry — four 

of the orbitals are symmetric, two are antisymmetric.  This means that we can now block-

factor each of the k-dependent 6 6  secular determinants into a pair of 4 4  and 2 2  

determinants. 
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Figure 5.  The benzene  orbitals used for building up the band structure of p-polyacene. 

The two antisymmetric bands, built up from the benzene orbitals of AA and AS 

symmetry, are simply handled.  Since neither of these fragment orbitals has a coefficient 

on the atoms that link the rings to their neighbors (atoms 1 and 4), when the 2 2  Hückel 

secular determinant is set up using these orbitals as a basis the off-diagonal matrix 

elements are zero.  We know that there will be two bands which are completely flat (i.e., 

the E(k) vs k curves will show no dispersion) and will lie at the same energies as the 

benzene orbitals from which they derive,  and . 



The symmetric bands, for general k points , are built from the benzene orbitals 

of SS and SA symmetry which have labels 1 through 4 in Fig. 5.  A 4 4  secular 

determinant is analytically intractable, but there are special k points , 0 and 1 2a , where 

some simplification is possible.  To understand how this occurs, its useful to look at the 

Bloch basis orbitals at these two k points .  For these special points, we can see that the 

Bloch basis orbitals are either symmetric or antisymmetric with respect to reflection in 

the 2 plane.  For k = 0 or 1 2a , e2 ika
= 1 or –1 , and this means that only for these 

k points  will the Bloch orbitals exhibit this symmetry.  This is quite general and can be 

understood by noting that k , viewed as a vector in one dimension, is transformed to k  

after being reflected through the 2 plane.  Viewed another way, we note that a Bloch 

function, (k) , exhibits orbital coefficients in one cell which are the same as the previous 

cell after moving in the positive x direction, after multiplication by e2 ikx .  After 

reflecting through the 2 plane, the same pattern appears when we move in the negative x 

direction.  Because of this  behavior,  the resulting function belongs to a representation at 

k  — (k)  is transformed to ± ( k)  by reflecting through a plane perpendicular to k .   

k

0

k

1/2a1/2a

  
(k) 2 ( k)

 

For k = 0 , this obviously implies that a reflection through the 2 plane leaves us with a 

function belonging to the same k point .  Because the points k = 1 2a  and 1 2a  really 

correspond to the same irreducible representation, this reflection is also “a good 

symmetry operation” for k = 1 2a  as well.  In general, the set of operations which carry 

k  onto k  or an equivalent wavevector form a group that is called the “group of k ”. 



k = 0 µ (k) ~ µ (0) + µ (1) + µ (2) +  

4 ( )0

3 ( )0

2 ( )0

1 ( )0

k = 1 2a   
  
µ (k) ~ µ (0) µ (1) + µ (2)  

1 (        )1 2a

2 (        )1 2a

3 (        )1 2a

4 (        )1 2a
 

Figure 6.  The Bloch basis functions for p-polyacene are shown for k = 0 and 1 2a . 

The discussion in the preceding paragraph indicates that at k = 0 and 1 2a  we 

subdivide the 4 4  secular determinant for the symmetric bands into two 2 2  

determinants, one for the bands built from SS symmetry orbitals (1 and 3) and the other 

for those built from SA symmetry orbitals (2 and 4).  Using the numerical labels we will 

construct the appropriate matrix elements.  From the benzene orbital energies we write: 

H11
0
= 2 , H22

0
= , H33

0
= , H44

0
= 2 .  Each of the ring orbitals interacts with its 

likeness in neighboring cells: H11
1
= H11

1
= 6 , H22

1
= H22

1
= 3 , H33

1
= H33

1
= 3 , 



H44
1
= H44

1
= 6 .  The nonzero off-diagonal matrix elements we will need are: 

H13
1
= H13

1
= 3 2 , H24

1
= H24

1
= 3 2 .  With these we can get the Hij(k)  matrix 

elements : 

H11(k = 0) = e0

p

H11
p
= 2 + 2 ( 6) = 7 3  

H22 (k = 0) = + 2 ( 3) = 3  

H33(k = 0) = + 2 ( 3) = 3  

H44(k = 0) = 2 + 2 ( 6) = 7 3  

H13(k = 0) = 2 ( 3 2) = 2 3 2  

H24 (k = 0) = 2 ( 3 2 ) = 2 3 2  

H11(k = a) = ( 1)p

p

H11
p
= 2 2 ( 6) = 5 3  

H22 (k = a) = 2 ( 3) = 5 3  

H33(k = a) = 2 ( 3) = 5 3  

H44(k = a) = 2 2 ( 6) = 5 3  

H13(k = a) = 2 ( 3 2) = 2 3 2  

H24 (k = a) = 2 ( 3 2) = 2 3 2  

Using the matrix elements above, we set up the secular equations for the SS and 

SA subblocks at k = 0 and 1 2a : 

k = 0:  

SS block: 
H11(k) E H13(k)

H31(k) H33(k) E
=
7 3 E 2 3 2

2 3 2 3 E
= 0  

SA block: 
H22(k ) E H24(k)

H42(k ) H44(k ) E
=

3 E 2 3 2

2 3 2 7 3 E
= 0  

k = a: 

SS block: 
H11(k) E H13(k)

H31(k) H33(k) E
=
5 3 E 2 3 2

2 3 2 5 3 E
= 0  

SA block: 
H22(k ) E H24(k)

H42(k ) H44(k ) E
=
5 3 E 2 3 2

2 3 2 5 3 E
= 0  

The solutions are: 

k = 0:   SS block: E = ± 2 ; SA block: E = ± 2  



k = a: SS block: E = ± 3 ; SA block: E = ± 3 . 

The energy bands for values of k between 0 and 1 2a  are more difficult to 

calculate analytically, but symmetry considerations tell us how to connect the bands 

between these points.  Quite simply, all Bloch basis orbitals that are symmetric with 

respect to reflection through 1  (built from SS and SA benzene fragment orbitals) will 

mix for intermediate values of k .  This means that the energy bands must be connected 

without introducing any crossings among symmetric bands when moving from 0 to 1 2a .  

The total  band structure is plotted in Figure 7. 

 

Figure 7. The  band structure for p-polyacene is 
shown.  Note that there are six electrons per unit cell 
and so the bottom three bands are occupied.  The 
presence of band gap between occupied and 
unoccupied bands indicates that this should be a 
semiconducting polymer. 




