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The One-dimensional Translation Group 

If chemists wish to understand the symmetry properties of a particular molecule’s 

vibrational modes, they know that they must understand the transformation properties of 

the irreducible representations of that molecule’s point group.  Likewise, chemists are 

familiar with the use of point groups to simplify and/or classify molecular orbitals.  

Without an entirely analogous accounting for symmetry, the problem of understanding 

the “molecular” orbitals of an infinite chain system such as the crystalline trans-

polyacetylene depicted below would seem to be intractable.  However, all crystals 

 

Figure 1.  The chain structure of trans-polyacetylene. 

have a tremendous amount of translational symmetry and trans-polyacetylene is just a 

one-dimensional example.   

When we imagine the application of a point group symmetry operation to a 

molecule, we think of the all atoms of the molecule as being carried to the position that 

an equivalent atom had previously occupied.  A six-fold 

rotation applied to benzene carries H1 to the position occupied 

by H2, H2 to the position occupied by H3, and so on. 

A translation operation, t , when applied to the one-

dimensional chain, simply moves the contents of a given unit 



cell into the neighboring cell.  If the translation operation is applied twice in succession 

(t2 ), the all the atoms of the chain are shifted by two unit cell lengths, and so on ... for 

the operations   t
3 ,  t4… .   

 
Figure 2.  The translations of the TN group for a polyacetylene chain. 

The group of translation operators (which we shall call TN) is  quite analogous to 

a pure rotation group, CN .  In fact, if we impose one artificial constraint on the 

translation group, its structure will be exactly like the rotation group.  Up to this point we 

have ignored the question of what happens to the ends of a chain when we apply a 

translation operation, an attitude which would be justified if the chain had infinite length.  

Rather than assuming the chain is infinite, we will instead assume that an infinite chain is 

well approximated as a ring with a very large radius of curvature.  We assume that if we 

had a ring with CN  symmetry it would be physically indistinguishable from an infinite 

chain (or at least a chain with N  unit cells) as long as N is very large.  Obviously, this is 

not a reasonable assumption if we are interested in atoms that are at or near the end of the 

chain, but it is quite reasonable if we are interested in the properties of the chain that are 

determined by the bulk of the atoms which are far removed from the ends (on the 

molecular scale).  To state our assumption mathematically, we assume that if we apply 

the translation operation N times (tN ), then we simply return the contents of each unit 

cell to their original position (i.e..,  tN = E — the identity operation).  Naturally, this is 

the same result we obtain when we apply a CNoperation to a N-membered ring system.   



All the properties of a CN  group are shared by the isomorphic TN group.  The 

multiplication table for the CN  group looks just like the multiplication table for the TN 

group, only the labels of the symmetry operations change.  In the rotation group, all the 

operations commute with one another: CmCn = CnCm; likewise for the translation 

group: tmtn = tntm .  Both CN  and TN are cyclic, abelian groups.  As a result, each of 

the translation operators (tm ) is in its own class.  There are N distinct one-dimensional 

irreducible representations for the group TN, just as for CN .  TN and CN  have identical 

character tables (as any pair of isomorphic groups must; compare, for example, the 

multiplication tables and character tables for the isomorphic groups C3v  and D3 ).  As far 

as group theory is concerned, we can handle chain systems with machinery that is no 

different than for point groups.  However, we need to introduce the notation that is used 

for crystals. 

Let us take a look at the structure of a character table for the translation group TN 

for a one-dimensional system = e2 i N( ) , written in a way directly comparable to 

presentation given by Cotton (p. 96, 3rd edition): 

  

t t2 t3 tN 1 tN = E
1 2 3 N 1 N

2 2 4 6 2N 2 2N

3 3 6 9 3N 3 3N

N 1 N 1 2N 2 3N 3 (N 1)2 N (N 1)

N N 2N 3N N(N 1) N 2

 
Table 1.  Character table for the TN group. 

We recognize that N
= e2 i N( )

N
= e2 i

=1 , so that the above table can be simplified 

to read as indicated in Table 2 (just as done for the C5  group on p. 97 of Cotton). 
 



  

t t2 t3 tN 1 tN = E
1 2 3 N 1 1
2 2 4 6 2N 2 1
3 3 6 9 3N 3 1

N 1 N 1 2N 2 3N 3 (N 1)2 1
N 1 1 1 1 1

 

Table 2.  A rewritten character table for the TN group. 

Now let us complicate matters and introduce many redundant irreducible 

representations to top of this table, that we will label as   
0,  1,  2,  etc…. We will 

furthermore add additional redundant representations to the bottom of the table that we 

will label as   
N+1,  N+2,  etc….  Because of the nature of the complex number , we 

see that 0  is equivalent to N , 1  is equivalent to N 1, N+1 is equivalent to 1 ,  

N+2  is equivalent to 2 , and so on.  We then have an “extended” character table in 

which all mN + j  (m  and j  are integers) are identical with j . 
 

  

t t2 t3 tN 1 tN = E

2 2 4 6 2N +2 1
1 1 2 3 (N 1) 1
0 0

= 1 1 1 1 1
1 1 2 3 N 1 1
2 2 4 6 2N 2 1

N 1 N 1 2N 2 3N 3 (N 1)2 1
N 1 1 1 1 1
N+1 N+1 = 2 3 N 1 1

 

Table 3.  Character table for the TN group, including redundant representations outside 

the dashed lines. 

Because of the redundancies and periodicity that relates rows of the above table 

we can choose any set of adjacent N  rows in the table and have a complete set of 

irreducible representations for the translational group TN.  In particular, we can choose 



the set of N  representations that extend from N 2+1 to N 2 (Assume, for the sake of 

convenience, that N  is an even number.  No serious complications arise if N is odd.)  

Further, we replace factors of   
N ,  2N ,  3N ,… by 1 and   

N 2,  3N 2,  5N 2,… by -1.  

Then our character table takes the appearance we see below: 
 

  

t t2 t3 tN 1 tN = E

N 2 1 1 1 1 1
N 2+1 2 3 1 1

1 1 2 3 (N 1) 1
0 1 1 1 1 1
1 1 2 3 N 1 1

N 2 1 1 1 1 1
N 2+1 2 3 1 1

 

Table 4.  TN: nonredundant representations are included between dashed lines. 

where we have intermittently used the relations N
=1 and mN+ j

=
j for integral m .  

In handling the symmetry of one-dimensional chain systems, this set of irreducible 

representations is the usual choice. 

The reader should recognize that we have done nothing in the above but rearrange 

the character table for the cyclic group TN.  The basic group theory for the cyclic, 

abelian TN group is indistinguishable from that for a CN rotation group and all the 

properties of the CN group are naturally the same for TN.  We are now in a position to 

make some changes in notation that will allow us to make direct connections to the 

language of solid state scientists in dealing with systems with translational symmetry 

(crystals!). 



As we indicated in the opening remarks, the translation group is used for handling 

systems that are very large (effectively “infinite”) on the molecular scale.  For example, if 

we are concerned with the electronic structure of polyacetylene, we can safely assume 

that a treatment suitable for describing the bulk electronic properties of an “infinite” 

polymer would virtually as good for a finite polymer with 40,000 unit cells as it would 

for a polymer with 60,000 unit cells.  Because we are interested in the limit where 

polymers are very long, we want to somehow eliminate the N  dependence that remains 

in our discussion of the translation group. 

The N  dependence of the translation group is customarily eliminated (or at least 

hidden) by introducing a variable, k  ,that is simply proportional to the labels for the 

irreducible representations: 

k =
1

a
 
 

 
 

j

N
 
 

 
 
;          -

1

2a
< k

1

2a
. 

where the range of k  is determined by the fact that in the list of unique irreducible 

representations, j  runs from (N 2) +1  to (N 2) .  Any function that “belongs” to given 

irreducible representation  j  is now said to “belong” to a given k .  With the above, we 

note that j  =  e 2 ika  so that the characters for any of the N irreducible representations 

can be written in the same form, 
 

  

t t2 t3 t N 1 tN = E
(k ) e 2 i(k•a) e2 i(k•2 a) e2 i(k•3a) e 2 i(k•a) 1  

We must remember that k takes on exactly N discrete values within the range 

-1 (2a) < k 1 (2a) .  We should note that our definition for k is not universal; it is 

common in physics texts to define k = (2 a)( j N);  - ( a) < k ( a) , which 

eliminates the factors of 2  that explicitly appear in the characters but which are instead 

included in the definition of k.  The usefulness of this form of the translation group 

representations will become more apparent in later sections. 


