
Transitions Between Stationary States (Adapted from Harris and Bertolucci, p. 130) 

We need to consider the means by which matter absorbs radiation, i.e., the 
manner in which radiation perturbs a system described by one stationary state (say, the 
ground state) so that it is at some later time in another stationary state (an excited state).  
The total wavefunction of the system is symbolized by Ψ (capital psi, a function of 
position and time, Ψ = Ψ(r ,t)) and will reserve ψ’s (lowercase psi’s) to symbolize time-
independent wavefunctions.  We seek an expression for the probability that a system in 
its ground state, ψ0 can be stimulated by radiation into an excited state, ψ1. 

We will assume that only the two states are important so the wavefunction will 
take the form  
 Ψ(r,t) = c0 (t)Ψ0 (r,t)+ c1(t)Ψ1(r,t)  (1) 

where it has been made explicit that the coefficients of the two states, c0(t) and c1(t), will 
change over time.  We will assume that the system starts out in the ground state, so that at 
t =0, c0 = 1 and c1 = 0.  Furthermore, it is anticipated that probability for absorption is 
low enough that c0 >> c1 so that Ψ ≈ Ψ0 + c1Ψ1 for the time periods of interest (i.e., the 
normalization constant, [|c0|

2 + |c1|
2]–1/2, is sufficiently close to 1 that c0 ≈ 1.  What we 

seek is the probability of finding the system in the excited state, Ψ1, after the system is 
irradiated.  That probability is given by |c1|

2 = c1*c1. 
If the Schrödinger equation contained no time dependent potential, the system 

would remain in its ground state forever.  However, when a photon impinges on matter it 
introduces an electromagnetic field that varies in space and time, which means that in the 
presence of radiation, the Hamiltonian of the system is perturbed; the electromagnetic 
field of the photon subject the particles that make up matter to a potential energy: 

     H (r,t) = H 0(r) + ′H (r,t)  (2) 

where H 0(r) is the Hamiltonian for the system in the absence of the electromagnetic 
field. The potential energy term, H ′(r ,t), introduced by the electromagnetic field will be 
more carefully discussed below. 

Before we consider the system’s changes in the presence of the electromagnetic 
field, let us recall that we can write the time dependent Schrödinger equation and apply it 
even in the absence of the field: 

 
     
H 0(r)Ψ(r,t) = i! ∂Ψ(r,t)

∂t
 (3) 

ψ0 and ψ1 are solutions of the time-independent Schrödinger equation, H 0ψ i = E iψ i , 
with energies E0 and E1, and the solutions Ψ0  and Ψ1  are  



  Ψ0 (r,t) =  ψ 0 (r)e−iE0t !    and    Ψ1(r,t) =  ψ1(r)e−iE1t ! . (4) 

The time-dependent terms multiplying these wavefunctions are not significant when the 
potential isn’t time-dependent because these terms just multiply the time-independent 
wavefunctions by ‘phase factors’ with magnitude unity (so they don’t affect |Ψ|2 = Ψ ∗Ψ, 
for example, and therefore don’t affect our probabilities of finding the particles in the 
system in any given location.)  Substituting equations (4) into Equation (1): 

  Ψ(r,t) = c0 (t)ψ 0 (r)e
−iE0t ! + c1(t)ψ1(r)e

−iE1t ! . (5) 

Now we consider how the system changes with time using the time-dependent 
Schrödinger equation with the electric field present: 

 
     
[H 0(r) + ′H (r,t)]Ψ(r,t) = i! ∂Ψ(r,t)

∂t
. (6) 

Before substituting Equation (5) into (6), we note that 

     [H 0(r) + ′H (r,t)]Ψ(r,t) = ′H (r,t)Ψ(r,t) + c0E0Ψ0 + c1E1Ψ1  (7) 

and 

 

 

i! ∂Ψ(r,t)
∂t

= i! ∂
∂t

c0 (t)ψ 0 (r)e
−iE0t ! + c1(t)ψ 0 (r)e

−iE0t !( )
= i! Ψ0

∂c0
∂t

+Ψ1
∂c1
∂t

⎛
⎝⎜

⎞
⎠⎟
+ c0E0Ψ0 + c1E1Ψ1

 (8) 

The last two terms in (7) and (8) are the same, so when we plug (5) into (6), we get 

 
     

′H (r,t) c0Ψ0 + c1Ψ1( ) = i! Ψ0
∂c0

∂t
+Ψ1

∂c1

∂t
⎛

⎝⎜
⎞

⎠⎟
. (9) 

If we multiply on the left of both sides of (9) by Ψ1
∗ and integrate over all space, we get 

 

     

Ψ1
* ′H (r,t) c0Ψ0 + c1Ψ1( )

all
space

∫ dτ = i!
∂c0

∂t
Ψ1

∗Ψ0
all

space

∫ dτ +
∂c1

∂t
Ψ1

*Ψ1
all

space

∫ dτ
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, (10) 

but since Ψ0  and Ψ1  are orthogonal and Ψ1  is normalized, the first term on the right 
hand side vanishes and the second integral is unity, so 

 

     

Ψ1
* ′H (r,t) c0Ψ0 + c1Ψ1( )

all
space

∫ dτ = i!
∂c1

∂t
. (11) 



At this point, we must turn our attention to actual nature of the electromagnetic field.  In 
general, we can write the following for electric and magnetic fields, E and H, of an 
electromagnetic wave propagating along the direction of the wavevector k, 

  

E = E0 cos 2πi(k ⋅ r −νt){ };
H = H0 cos 2πi(k ⋅ r −νt){ }          (12) 

If the wave is propagating in the z-direction, 
then the electric field oscillates in the x-direction 
and the magnetic field oscillates in the y-
direction (see Figure), 

  

k = kẑ; E0 = E0x̂; H0 = H0ŷ

(Ê0 × Ĥ0 = k̂)
E = E0 cos 2π (kz −νt){ } x̂;
H = H0 cos 2π (kz −νt){ } ŷ

        (13) 

Moving along the z-direction at fixed time, we can see that cosine function goes through 
one period (its argument changes by 2π) if k = 1/λ, so another way to write E and H is 

 
 
E = E0 cos 2π

λ
(z − ct)⎧

⎨
⎩

⎫
⎬
⎭
x̂   ;   H = H0 cos 2π

λ
(z − ct)⎧

⎨
⎩

⎫
⎬
⎭
ŷ , (14) 

where we have used ν = c λ .  This form reveals most clearly that the photon “wave” 
function shifts the position of any crest or trough at the speed of light, c, but we shall use 
the forms given in Eq. (13) and we will neglect the effects of the magnetic field.  In an 
electric field E, an electron with a charge –e is subject to a force, F = –eE.  A force acting 
in a given direction can be viewed as the gradient of a potential energy – which is our 
perturbation, H ′(r ,t),  

 

    

F = ∇
!"
V   so  − eE = −eE0 cos 2π (kz −νt){ } x̂ = dV

dx
⎛
⎝⎜

⎞
⎠⎟
x̂

V = −exE0 cos 2π (kz −νt){ } + C = ′H (r,t)
 (15) 

where the second equation follows by integration of the first. We can choose the constant 
of integration, C, to be zero (which is equivalent of making a choice for our zero of 
potential energy).  For the purpose of calculation, it is convenient to use an exponential 
form for the cosine function, cosθ = (eiθ + e–iθ)/2, 



 
  

′H (r,t) = −exE0
2

e2π i(kz−νt ) + e–2π i(kz−νt ){ } = −exE0
2

e2π ikze−iω t + e–2π ikzeiω t{ }
 
(16) 

where ω = 2πν.  Now, upon inserting this perturbing field into equation (11), we recall 
that our interest lies in how c1 is changing near t = 0, at which time c1 = 0 and c0 = 1.  We 
can therefore throw out the term in (11) containing c1 on the left side: 

 

    

−eE0

2
ψ1

*eiE1t !x e2π ikze− iω t + e–2π ikzeiω t{ }ψ 0e− iE0t !

all
space

∫ dτ = i!
∂c1

∂t
   or

∂c1

∂t
=
−eE0

2i!
ei( E1−E0 )t !

e− iω t e2π ikzψ1
*xψ 0∫ dτ

            + eiω t e–2π ikzψ1
*xψ 0∫ dτ

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

 

(17)

 

Eq. (17) is useful when considering transitions in crystals, as we shall see later on. Values 
of z typical for molecular dimensions are much smaller than the wavelength of the 
radiation impinging on it, i.e., z << λ (or kz << 1).  We can therefore expand the 
exponentials inside the integrals in a rapidly convergent series, i.e., e±2πikz ≈ 1 ± 2πikz – 
4(πkz)2. Truncating the expansion at the first (constant) term is called the electric dipole 
approximation.  With all three the terms shown, we have 

    

∂c1

∂t
=
−eE0

2i!
ei( E1−E0 )t !

e− iω t (1+ 2π ikz − 2(πkz)2 )ψ 1
*xψ 0∫ dτ

+eiω t (1– 2π ikz − 2(πkz)2 )ψ 1
*xψ 0∫ dτ

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

     =
−eE0

2i!
ei( E1−E0 )t !

(e− iω t + eiω t ) ψ 1
*xψ 0 dτ∫ + 2(πk)2 ψ 1

*xz2ψ 0∫ dτ
⎛

⎝⎜
⎞

⎠⎟

+2π ik(e− iω t − eiω t ) ψ 1
*xzψ 0∫ dτ

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

 

but we will retain only the first integral (in the box).  If we retain the other much smaller 
integrals, we can obtain electric-quadrupole transitions, etc.  Without them, we get 

 
    

∂c1

∂t
=
−E0

2i!
(ei( E1−E0 +hν )t ! + ei( E1−E0 −hν )t ! ) ψ1

*exψ 0∫ dτ . (18) 

The integral in this expression is called the transition moment integral, between state 0 
and state 1, which we will denote as µx

01.  Since this expression applies for short times 
after t = 0, we integrate the expression under this assumption to obtain 



 
   
c1 =

−E0

2
µ01

x 1− ei( E1−E0 +hν )t !

E1 − E0 + hν
+

1− ei( E1−E0 −hν )t !

E1 − E0 − hν

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (19) 

When hν ≅ E1 – E0, the first term is much smaller than the second and can be neglected.  
As indicated at the beginning of this section, the probability of being in the excited state 
is given by c1*c1,  

 

    

c1*c1 =
E0

2

4
µ01

x  2 2 − ei( E1−E0 +hν )t ! − e− i( E1−E0 −hν )t !

E1 − E0 − hν( )2
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 or     c1*c1 =
µ01

x  2E0
2 sin2 E1 − E0 − hν( )t 2!⎡⎣ ⎤⎦

E1 − E0 − hν( )2
 

(20)

 

where the substitution sin2θ = (2 – e2iθ – e–2iθ)/4 has been used.  If we integrate over all 
frequencies of radiation (assuming the incident radiation is white light), this gives,  

 

    

c1*c1 =
E0

2µ01
x  2t

4!2    or, taking account of x, y, or z  polarizations

d c1*c1( )
dt

∝ E0
2 µ01

x  2 + µ01
y  2 + µ01

z  2( )
        

 (21) 

The initial rate at which the excited state is generated when the light is turned on is 
proportional the square of the amplitude of the radiation and to the square of the 
transition moment integral(s).  Because the intensity of the light is also proportional the 
square of the amplitude of the radiation, rate at which the excited state is populated in 
proportional to the intensity of the incident radiation.  Of fundamental significance as far 
as symmetry is concerned is the fact that absorption does not occur in the dipole 
approximation if transition moments are zero by symmetry. 


