
PERTURBATION THEORY AND SUBGROUPS (REVISED 11/15/08) 

The use of groups and their subgroups is of much importance when perturbation 
theory is employed in understanding molecular orbital theory and spectroscopy.  
Perturbation theory begins with the premise that one knows the solutions (energies, E1

(0), 
E2

(0), E3
(0), … and eigenfunctions, ψ1

(0), ψ2
(0), ψ3

(0), …) for some unperturbed problem 
for which the Hamiltonian is H (0).  (The superscript “(0)” refers to the unperturbed 
problem as the “zeroth-order” problem.)  Consider the introduction of an additional 
“perturbation” – contained in an additional term in the Hamiltonian, H ′, that is added to 
the zeroth-order Hamiltonian to give a (more) complete Hamiltonian for the system: H  = 
H (0) + H ′.  Standard quantum mechanics texts derive formulas the corrections to the 
energies and wavefunctions that result from this new term in the Hamiltonian:  
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The terms in these formulas can 
be interpreted as follows: each of the 
first-order corrections to the energies, 
Ei

(1), involve the expectation value of 
the perturbed part of the Hamiltonian, 
H ′, and the corresponding zeroth-
order wavefunction, ψ i

(0). In other 
words, we look at the wavefunctions 
as they exist in zeroth-order and first 
consider what the perturbation does 
to the energies of those wavefunc-
tions without considering changes to 
the wavefunctions.  The first-order 
corrections to the wavefunctions, 
ψ i

(1), involve the mixing of each the 
other wavefunctions, ψ j

(0) (j=1,2,3,… ≠ i) into ψ i
(0) to the extent that H ′  “couples” ψ i

(0) 
and ψ j

(0) together. The second-order corrections to the energies, Ei
(2), reflect the energetic 

corrections due to the mixing we see in the first-order wavefunctions.  We will not 
consider higher-order corrections in perturbation theory here. 

Two examples based on Hückel theory will illustrate how perturbation theory works 
and the role that group theory plays in its application.  These examples are discussed in 
some detail in an effort to put across some general features of perturbation theory in 
practice. 

Schematic results of applying perturbation theory in which 
the perturbation “mixes” the lower two levels. 



I. A simple example of a perturbational MO analysis 
is provided by treating the π-bonding in H2B=NH2 as a 
perturbed example of ethylene, as illustrated here:  

 
 

We begin with the Hückel π orbitals and energies for ethylene (the atomic orbitals are 
labeled according to how they are to be ‘transformed’ on moving from H2C=CH2 to 
H2B=NH2): 
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   (recall, ! < 0)  

The perturbation of the system is reflected in the changed values of α for the two pπ 
orbitals, which we will assume to be as illustrated above: the nitrogen atom pπ orbital is 
lower in energy than the carbon atom pπ orbital by δ, the boron atom pπ orbital is higher 
in energy than the carbon atom pπ orbital by δ.  In order to use perturbation theory, we 
need to know the matrix elements of H ′ using the zeroth-order wavefunctions, ψ1

(0) and 
ψ2

(0), as a basis.  The matrix for H ′ in this basis can be obtained by taking the difference 
between the matrices for H  and H (0): 
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  ; Let's take each matrix element in turn,
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We should point out a few things at this point.  First, readers may be asking 
themselves, “If we have the matrix H, then why not solve the secular equation exactly 
(within the very crude Hückel approximation)?”  We will do just that below – our 
purpose here is to show how perturbation theory works by applying it to a problem where 
we can compare to the “exact” solution.  Second, we should note that the way we found 
H′  is not usual, but since Hückel theory never really involves calculation of integrals 
containing differential operators, H ′ is only defined in terms of the matrix elements of 
H′ .  Finally, we note that the elements of H′ are actually rather easy to understand: H ′11 
and H ′22 are both zero because both the bonding and antibonding π orbitals are equally 
spread over both atoms.  If we raise the energy of one atomic orbital by ‘converting’ a 
carbon into a boron and lower the energy of the other atomic orbital by the same amount 
upon ‘converting’ a carbon into a nitrogen, then there should be no first-order shift in 
energy of the MOs, since the first-order energy shifts are computed using the initial, 
zeroth-order orbitals.  On the other hand, H ′12 (= H ′21) are not zero because the π MOs 
that were appropriate for ethylene are not appropriate for H2B=NH2 and these matrix 
elements ensure that there will be mixing of these two MOs to when we ‘convert’ 
H2C=CH2 to H2B=NH2.  We can now summarize the results of applying perturbation 
theory: 
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Which is shown pictorially on the next page. 
We can compare the perturbation theory results with exact results (within Hückel 

theory) by finding the eigenvalues and eigenvectors of H. In the basis of the 

eigenfunctions of the unperturbed problem, 
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atomic orbital basis,
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.  The eigenvalues of both matrices are the 

same, since one obtains the exact orbital energies for H2B=NH2 no matter which basis 
one begins with. That is, the choice of initial basis doesn’t affect the energies or orbitals 
finally obtained if the basis functions in one basis are just linear combinations of basis 



 
functions in the other. To find the exact energies, we solve the secular equation in either 

basis: 
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Perturbation theory provides an approximate approach to solving quantum 
mechanical problems, and works best when the perturbation is ‘small’.  In the present 
context, a ‘small’ perturbation is one in which δ << |β |.  In this case, we can expand the 
square-root and see how perturbation theory give the first two terms in the expansion: 
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It is left to the reader to find that the wavefunctions also come into correspondence in 
the limit that δ << |β |.  Before leaving this example, let’s summarize the main features 
and emphasize a point about symmetry we have not yet mentioned: 

• Besides the points already emphasized, note that when a perturbation is introduced, 
the lower energy of the two states (orbitals, in this case) is pushed lower by mixing with 
the upper state (orbital) and the upper state (orbital) is pushed higher.  This must always 
occur in the second-order term of perturbation theory because the energy difference in 
the denominator is negative in the first case and positive in the second case – the 
numerator must be positive. (Note that this does not mean that the first-order shifts, 
which were zero in this example, can’t generally be either positive or negative.)  

• Even when perturbation theory is problematic because the ‘perturbation’ isn’t very 
small, the signs and trends in the analysis are still useful – perturbation theory is a 
valuable qualitative tool. 

• Finally, note that the perturbation in this example lowers the symmetry of the 
system from D2h to C2v.  The π (b3u) and π* (b2g) orbitals, which belonged to different 
irreducible representations in D2h, belong to the same representation (b1) in C2v.  This 
must be the case if they are to mix.  Conversely, if even after applying a perturbation, 
two states (levels, in this case) still belong to different irreducible representations in the 



perturbed system, then they cannot mix.  We can see this algebraically by noting that if 
ψ i

(0) and ψ j
(0) belong to different irreducible representations, H ′ij must be zero. 

 
II.   Our second example is nearly as simple as the first, but shows how to handle 

degeneracies using perturbation theory and the role that symmetry plays in this process.  
We’ll examine the molecular orbitals of the H3 molecule, first assuming it to have D3h 
symmetry, and then we’ll consider the opening of one of the bonds to generate a C2v-
symmetry bent structure.  We’ll again use Hückel theory and the perturbation will come 
in the form of a lost interaction (β) between H2 and H3.  The unperturbed (D3h)  energies 
and wavefunctions are easily found: 
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H1

H3
H3H2

H1

D3h C3v
 

Energies and wavefunctions for the bent (C2v) molecule are also easily found, 
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and, when viewed pictorially, the correlation from D3h MOs to C2v MOs is intuitively 
obvious: 

 
Now let’s analyze this problem using perturbation theory.  Expressed in terms of 

interatomic interactions, the perturbation can be stated as 
   
!

2
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3
d"#  → 0.  Keeping this 

in mind we can write the matrices H(0) and H easily, and again get H′  by difference (once 
again, we use the zeroth-order eigenfunctions as the basis for all three): 
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Let's take each matrix element in turn,
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The diagonal elements of H′  are easily understood: the most bonding orbital ψ1
(0) and 

the antibonding orbital ψ3
(0) are both destabilized by loss of overlap between χ2 and χ1.  

Since the product of the coefficients of these two AOs is twice as large for ψ1
(0) as for 

ψ3
(0), the destabilization of ψ1

(0) twice as large (H ′11 = 2H ′33).  On the other hand, the 
antibonding orbital ψ2

(0) is stabilized by loss of overlap between χ2 and χ1, and the 
magnitude of the product of the coefficients of these two AOs is three times as large for 
ψ1

(0) as for ψ3
(0) (H ′22 = –3H ′33).   

The off-diagonal elements of H′  are important to understand – indeed, they are the 
key to understanding how degenerate perturbation theory should be applied.  The only 
unique nonzero off-diagonal matrix element is H ′13(= H ′31).  However, had the e′ orbitals 
been chosen differently, both H ′23 and H ′13 could have been nonzero. Remember, any 
orthogonal pair of orbitals constructed from the two e′ orbitals is a legitimate alternative 
choice as long as the molecule has D3h symmetry. Thus, if we constructed combinations, 



ψ2p
(0) = aψ2

(0) + bψ3
(0), ψ3q

(0) = bψ2
(0) – aψ3

(0),  (a2  + b2  = 1),  ψ2p
(0) and ψ3q

(0) form a 
basis for the e′ representation.  But only the combination of e′ orbitals chosen here are 
correct zeroth-order wavefunctions for the perturbed 
system.  This is so because in the C2v subgroup appropriate 
for the perturbed problem, ψ2

(0) belongs to the b2 
representation and ψ3

(0) belongs to the a1 representation – 
any other choice would require mixing orbitals of different 
symmetry in the perturbed system.  The essential 
requirement of the e′ orbital combination that must be used 
in this case is that orbitals must be chosen such that they are 
(anti)symmetric with respect to the C2 or σ(xz) plane – which amounts to the same thing 
since both e′ orbitals must be symmetric with respect to σ(yz).  An exactly analogous 
choice of degenerate orbitals (or states) must be always be chosen in any perturbation 
theory application where the perturbation lowers the symmetry of the system:  

Correct zeroth-order wavefunctions must be chosen for degenerate states 
such that each of the higher-symmetry wavefunctions belongs to particular 
irreducible representations of the subgroup of the perturbed system. 

Now we can proceed to write down the perturbed energies and wavefunctions: 
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The first order energy shifts have been discussed; the second order effects are seen only 
in the a1 energy levels and wavefunctions because only levels of the same symmetry (in 
the perturbed system) can be mixed by the perturbation.  The second-order effect on the 
lower a1 level must push it down in energy and we should expect that it modifies the 
wavefunction by increasing the contribution of center hydrogen atom (which is still 
bonded to two neighbors) and decreasing the contribution of the two outer hydrogen 
atoms (which have each lost a bonding neighbor).  Correspondingly, the upper a1 level 
must be pushed up in energy in second-order and in the wavefunction is modified by 
increasing the contribution of outer hydrogen atoms which were formerly ‘in phase’ 
within the upper a1 orbital. 

A comparison of the exact and perturbed results shows perturbation theory to yield a 
remarkably good approximation, especially since the magnitude of the perturbation is not 
small:  
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*The perturbed wavefunctions have been renormalized.

 

III.   Let’s look at a final pair of examples to more fully illustrate the manner in 
which symmetry affects the application of perturbation theory in practice. Consider the 
cyclobutadiene molecule, for which the π orbital energies and wavefunctions are given 
below.  

!
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))  
are just one possible choice for this 
degenerate set; any orthogonal linear 
combination would serve as well.  In 
particular, we can take the normalized 
sum and difference of these orbitals to 
obtain the pair of orbitals ψ (

2
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) and ψ (
3
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We will examine the effect on these 

orbitals exerted by two different 
‘perturbations’, (a) the transformation of 
the C4H4 ring into an alternating B2N2H4 
ring of D2h symmetry; (b) the distortion of 
the square D4h symmetry C4H4 ring into a rectangular D2h symmetry C4H4 ring in which 
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the magnitude of the π orbital interactions increase (β+) for the shorter C-C bonds and 
decrease (β–) for the longer C-C bonds.  For case (a), the perturbation expressed in terms 
of AOs is 
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since the boron positions are atoms 1 and 3 and the nitrogen positions are atoms 2 and 4.  
For case (b), the 1–2 and 3–4 interactions increase and the 2–3 and 1–4 interactions are 
weakened:

   
!

1
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2
d"# = !

3
H  !
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Before applying perturbation theory, one should evaluate the correlations between the 
irreducible representations (IRs) of the original system (D4h) and the IRs of the perturbed 
system, which have D2h symmetry in both case (a) and (b) – though the symmetry 
elements retained are different in the cases. In case (a), the D4h → D2h correlations for the 
π orbitals are a2u → b1u, eg → b2g ⊕ b3g, and b1u → b1u; in case (b), the D4h → D2h  
correlations for the π orbitals are a2u → b1u, eg → b2g ⊕ b3g, and b1u → au. For treating 
case (a), the correct zeroth-order eg orbitals are ψ (

2
0
a

) and ψ (
3

0
a

), which respectively belong to 
the b3g and b2g representations in the D2h subgroup appropriate for the B2N2H4 system. 
For case (b), the correct zeroth-order combination of eg orbitals are ψ (

2
0
b

) and ψ (
3

0
b

), which 
respectively belong to the b2g and b3g representations in the D2h subgroup appropriate for 
the rectangular cyclobutadiene system. 

The group-subgroup correlations greatly simplify the application of perturbation 
theory because the only second-order orbital mixings that can occur involve orbitals with 
the same symmetry in the subgroup.  In case (a), only the upper and lower bonding and 
antibonding orbitals, both having b1u symmetry in the perturbed system, will be mixed by 
the perturbation.  In case (b), no 
second-order mixing occurs at 
all, because all the orbitals 
belong to different irreducible 
representations in the 
appropriate D2h subgroup.   

We calculate the matrix 
elements for each case: (a) H ′11 = 
0, H ′22 = δ, H ′33 = –δ, H ′44 = 0, H ′14 

= ¼(2αB – 2αN) = δ ; (b) H ′11 = 
0, H ′22 = ¼(4β+– 4β –) = 2xβ , H ′33 

= –2xβ , H ′44 = 0; and calculation 
of the both the first and second-
order energy shifts is a simple 
matter.  The figure summarizes 
the results. 

 


