Survival Facts from Quantum Mechanics

Operators, Eigenvalues and Eigenfunctions

An operator **O** may be thought as "something" that operates on a function to produce another function:

$$\mathbf{O}f(x) = g(x)$$

In most cases, the operators of quantum mechanics are *linear*. Operators are linear if they have properties:

$$\mathbf{O}[\mathbf{f}(x) + \mathbf{g}(x)] = \mathbf{O}\mathbf{f}(x) + \mathbf{O}\mathbf{g}(x)$$
$$\mathbf{O}c\mathbf{f}(x) = c\mathbf{O}\mathbf{f}(x)$$

where *c* is a constant (*c* can be a *complex number*: c = a + ib, $i = \sqrt{-1}$)

Examples:

linear operators:

x (multiplication by *x*):

$$x[f(x) + g(x)] = x f(x) + x g(x)$$

 $\frac{d}{dx}$ (differentiation with respect to *x*):

$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

A *non*linear operator: $\sqrt{}$ (square root operator):

$$\sqrt{\mathbf{f}(x) + \mathbf{g}(x)} \neq \sqrt{\mathbf{f}(x)} + \sqrt{\mathbf{g}(x)}$$

The **eigenvalues** and **eigenfunctions** of an operator **A** are those numbers a_j and functions φ_i which satisfy

$$\mathbf{A}\boldsymbol{\varphi}_j = a_j \boldsymbol{\varphi}_j$$

where j is just a label for the various eigenfunctions and corresponding eigenvalues which satisfy this equation. In other words, when **A** operates on one of its eigenfunctions, say φ_3 , the result is $a_3\varphi_3$ - just φ_3 back again, multiplied by the eigenvalue a_3 .

Note that if we multiply an eigenfunction of a linear operator by a constant c we still have an eigenfunction:

if
$$\mathbf{A}\varphi_j = a_j\varphi_j$$

then $\mathbf{A}(c\varphi_j) = c\mathbf{A}\varphi_j = c(a_j\varphi_j) = a_j(c\varphi_j)$

)

so that an eigenfunction φ_j and the function $\chi_j = c\varphi_j$ are not considered as independent eigenfunctions. (i.e., Since any eigenfunction is still an eigenfunction when multiplied by a constant, eigenfunctions which differ only by a multiplicative constant are not considered to be "distinct".)

Examples:

(1) The operator
$$\frac{d}{dx}$$
 has an eigenfunctions e^{kx} with eigenvalues k:

$$\frac{d}{dx}e^{kx} = ke^x$$

where *k* may take on any value.

(2) The operator $\left\{x\frac{d}{dx}\right\}$ also has an infinite set of eigenfunctions $\left\{x^n; n = 1, 2, \dots \infty, n \text{ may be nonintegral}\right\}$:

$$\left\{x\frac{d}{dx}\right\}x^n = x(nx^{n-1}) = nx^n$$

This example allows us to demonstrate that a linear combination of eigenfunctions is *not* an eigenfunction (unless the two eigenfunctions have the same eigenvalue). For example, there is no number c which satisfies the equation:

$$\left\{x\frac{d}{dx}\right\}\left[x^2 + x^3\right] = c\left[x^2 + x^3\right]$$

(3) The operator $\left\{\frac{d^2}{dx^2}\right\}$ has a set eigenfunctions of the form $\left\{\cos kx; k = \text{ real number}\right\}$ and $-k^2$ is the eigenvalue:

$$\frac{d^2}{dx^2}[\cos kx] = \frac{d}{dx}[-k\sin kx] = -k^2[\cos kx]$$

Note that the set of functions $\{\sin kx; k = \text{ any real number}\}\$ are also eigenfunctions with the same eigenvalue:

$$\left\{\frac{d^2}{dx^2}\right\} [\sin kx] = \frac{d}{dx} [k\cos kx] = -k^2 [\sin kx]$$

Therefore, for any given value of k, $\cos kx$, and $\sin kx$ are eigenfunctions of $\left\{\frac{d^2}{dx^2}\right\}$ with

the same eigenvalue $-k^2$. This means that any combination of $\cos kx$ and $\sin kx$ is also an eigenfunction

$$\left\{\frac{d^2}{dx^2}\right\}[a\cos kx + b\sin kx] = -k^2[a\cos kx + b\sin kx]$$

In particular, if a = 1 and $b = i = \sqrt{-1}$ we have

$$\left\{\frac{d^2}{dx^2}\right\}\left[\cos kx + i\sin kx\right] = \left\{\frac{d^2}{dx^2}\right\}\left[e^{ikx}\right] = -k^2\left[e^{ikx}\right]$$

so that $\{e^{ikx}; k = \text{any real number}\}\$ is an alternative set of eigenfunctions of $\{\frac{d^2}{dx^2}\}$.

Commutators

The *commutator* of two operators **A** and **B** is defined as

$$[\mathbf{A},\mathbf{B}] = \mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A}$$

if $[\mathbf{A}, \mathbf{B}] = 0$, then **A** and **B** are said to *commute*. In general, quantum mechanical operators can not be assumed to commute.

Examples:

When evaluating the commutator for two operators, it useful to keep track of things by operating the commutator on an arbitrary function, f(x).

(1) evaluate
$$\left[x, \frac{d}{dx} \right]$$
:

$$\left[x, \frac{d}{dx} \right] f(x) = \left(x \frac{d}{dx} - \frac{d}{dx} x \right) f(x)$$

$$= x \frac{df(x)}{dx} - \frac{d}{dx} (xf(x)) = x \frac{df(x)}{dx} - x \frac{df(x)}{dx} - f(x) \frac{d}{dx} x = -f(x)$$

$$\left[x, \frac{d}{dx} \right] f(x) = -f(x) \implies \left[x, \frac{d}{dx} \right] = -1$$
we that the effect of operating on any *arbitrary* $f(x)$ with $\left[x, \frac{d}{dx} \right]$ is to produce

We see that the effect of operating on any *arbitrary* f(x) with $\left\lfloor x, \frac{d}{dx} \right\rfloor$ is to produce -f(x), so that the last equation is generally true.

(2) In quantum mechanics, the operator for linear momentum in the *x* direction is $\hat{p}_x = \frac{\hbar}{i} \frac{d}{dx}$ (where $\hbar = h/2\pi$). Let's evaluate $[x, \hat{p}_x]$: $[x, \hat{p}_x] = x\hat{p}_x - \hat{p}_x x = \frac{\hbar}{i} \left(x \frac{d}{dx} - \frac{d}{dx} x \right)$ $= \frac{\hbar}{i} \left[x, \frac{d}{dx} \right] = -\frac{\hbar}{i} = i\hbar$

(3) In <u>classical</u> mechanics, the angular momentum of a particle around the origin is a vector quantity, **L**, which is defined as $\mathbf{L} = \mathbf{r} \times \mathbf{p}$,

$$\mathbf{L} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ x & y & z \\ p_x & p_y & p_z \end{vmatrix} = (yp_z - zp_y)\hat{\mathbf{x}} + (zp_x - xp_z)\hat{\mathbf{y}} + (xp_y - yp_x)\hat{\mathbf{z}}$$

so, identifying the components of L,

$$L_x = yp_z - zp_y$$
; $L_y = zp_x - xp_z$; $L_z = xp_y - yp_x$

which are the components of a single particle's angular momentum. To get the <u>quantum</u> <u>mechanical</u> *operators* for **L**, we insert the quantum mechanical *operators* for the linear momenta to obtain:

$$\hat{L}_x = \frac{\hbar}{i} \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) \quad ; \quad \hat{L}_y = \frac{\hbar}{i} \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right) \quad ; \quad \hat{L}_z = \frac{\hbar}{i} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$$

The reader should use these expressions to operate on an *arbitrary* function f(x, y, z) to evaluate the commutators

$$[\hat{L}_{x},\hat{L}_{y}] = i\hbar\hat{L}_{z}$$
; $[\hat{L}_{y},\hat{L}_{z}] = i\hbar\hat{L}_{x}$; $[\hat{L}_{z},\hat{L}_{x}] = i\hbar\hat{L}_{y}$

Quantum Mechanical Operators and Wavefunctions

If φ is to be considered a "well behaved" function, then we demand that it have the following properties:

- (a) φ must be continuous (no "breaks")
- (b) φ must have continuous derivatives (no "kinks")

(c) φ must be normalizable. To be normalizable, φ must obey the condition (the symbol d τ symbolizes integration over all space):

$$\int \varphi^* \varphi \, \mathrm{d}\tau = C$$
, where *C* is a finite constant.

Then we can normalize φ if we multiply by $\frac{1}{\sqrt{C}}$:

$$\int \left(\frac{\varphi^*}{\sqrt{C}}\right) \left(\frac{\varphi}{\sqrt{C}}\right) d\tau = 1.$$

Of central importance is the time-independent Schrödinger equation

 $\mathcal{H}\Psi = E\Psi.$

where \mathcal{H} is the *Hamiltonian* (or energy) *operator* for the system. Ψ is called the *wavefunction* or *state function* for the system and must be "well behaved" in the sense indicated above. In quantum mechanics, physically observable quantities are associated with *Hermitian* operators (eg., the energy of the system, the momentum of the system or of particles within the system, the position of particles in the system, etc.) If an operator **A** is Hermitian it has the property

$$\int \varphi^* \mathbf{A} \chi d\tau = \int \chi (\mathbf{A} \varphi)^* d\tau,$$

for all well behaved functions φ and χ .

If a system is in a state described by Ψ , then the *expectation value* we would observe for the property associated with the Hermitian operator A is given by

$$\langle \mathbf{A} \rangle = \int \Psi^* \mathbf{A} \Psi \, \mathrm{d}\tau,$$

if it is a physically observable quantity, it must real:

$$\langle \mathbf{A} \rangle^* = \langle \mathbf{A} \rangle$$
 so $\int \Psi^* \mathbf{A} \Psi \, \mathrm{d} \tau = \int \Psi (\mathbf{A} \Psi)^* \, \mathrm{d} \tau$.

Thus, the Hermitian property of operators associated with observables guarantees that calculated quantities for these observables will be real.

Example: Is \hat{p}_x Hermitian?

$$\int_{-\infty}^{\infty} \Psi^* \hat{p}_x \Psi dx = \int_{-\infty}^{\infty} \Psi^* \left(\frac{\hbar}{i} \frac{d}{dx} \Psi \right) dx = \frac{\hbar}{i} \int_{-\infty}^{\infty} \Psi^* \left(\frac{d}{dx} \Psi \right) dx =$$
(Integrate by parts, $\int_{-\infty}^{\infty} u dv = uv \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} v du$)
$$= \frac{\hbar}{i} \Psi \Psi^* \Big|_{-\infty}^{\infty} - \frac{\hbar}{i} \int_{-\infty}^{\infty} \Psi \left(\frac{d}{dx} \Psi^* \right) dx = \int_{-\infty}^{\infty} \Psi \left(\frac{\hbar}{i} \frac{d}{dx} \Psi \right)^* dx = \int_{-\infty}^{\infty} \Psi (\hat{p}_x \Psi)^* dx$$

note that if \hat{p}_x didn't have the factor of *i* in front, it wouldn't be Hermitian.

Orthogonality (Definition):

two functions φ and χ are said to be *orthogonal* if

$$\int \varphi^* \chi \, \mathrm{d}\tau = 0$$

<u>Important property of Hermitian Operators</u>: Eigenfunctions of a Hermitian operator *are orthogonal*. (In the case where two or more eigenfunctions have the same eigenvalue, then the eigenfunctions can be made to be orthogonal).

proof: suppose φ_i and φ_j are eigenfunctions of **A** with respective eigenvalues a_i and a_j such that $a_i \neq a_j$.

$$\mathbf{A}\boldsymbol{\varphi}_i = a_i \boldsymbol{\varphi}_i$$
$$\mathbf{A}\boldsymbol{\varphi}_j = a_j \boldsymbol{\varphi}_j$$

By use of the Hermitian property we get:

$$\int \varphi_i^* \mathbf{A} \varphi_j \, \mathrm{d}\tau = \int \varphi_j \left(\mathbf{A} \varphi_i \right)^* \, \mathrm{d}\tau,$$

now operate with A on both sides of the equation:

$$a_j \int \varphi_i^* \varphi_j \, \mathrm{d}\tau = a_i^* \int \varphi_j \varphi_i^* \, \mathrm{d}\tau.$$

 a_i is real because **A** is Hermitian. Then we have

$$(a_i - a_j) \int \varphi_j \varphi_i^* d\tau = 0.$$

$$\therefore \int \varphi_j \varphi_i^* d\tau = 0.$$

Now, if $a_i = a_j$, then we are free to combine φ_i and φ_j and we will still have an eigenfunction (see the example concerning $\frac{d^2}{dx^2}$ above). For example, suppose φ_1 and φ_2 both have eigenvalue *a* with respect to operator **A**. Then we can take

$$\chi_1 = \varphi_1$$
 and $\chi_2 = \varphi_2 + c \varphi_1$

and we can choose
$$c = -\int \varphi_1^* \varphi_2 \, \mathrm{d}\tau / \int \varphi_1^* \varphi_1 \, \mathrm{d}\tau$$
.

You can show that χ_1 and χ_2 are orthogonal and both still have eigenvalue *a*. QED.

Very Important Fact:

Commuting operators have common eigenfunctions.

suppose A and B commute: [A, B] = AB - BA = 0.

Let $\{\varphi_i\}$ be the set of eigenfunctions of **A** :

$$\mathbf{A}\varphi_i = a_i\varphi_i$$

then,
$$\mathbf{B}(\mathbf{A}\varphi_i) = \mathbf{B}(a_i\varphi_i) = a_i(\mathbf{B}\varphi_i)$$

but
$$\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} \text{ so } \mathbf{A}(\mathbf{B}\varphi_i) = a_i(\mathbf{B}\varphi_i)$$

: the function $\mathbf{B}\varphi_i$ is an eigenfunction of \mathbf{A} with eigenvalue a_i . If φ_i is the *only* eigenfunction of \mathbf{A} with eigenvalue a_i , then $\mathbf{B}\varphi_i \propto \varphi_i$ (in other words, $\mathbf{B}\varphi_i$ can only be an eigenfunction of \mathbf{A} with eigenvalue a_i if it differs from φ_i by a constant multiplicative factor – p. 2 of this handout). Thus,

 $\mathbf{B}\varphi_i = b_i\varphi_i$ for some constant b_i .

If a_i is a degenerate eigenvalue, i.e. there are more than one eigenfunctions of **A** with eigenvalue a_i , then we can take linear combinations of these eigenfunctions to satisfy this condition.