Survival Facts from Quantum Mechanics

Operators, Eigenvalues and Eigenfunctions

An operator O may be thought as “something” that operates on a function to produce another function:

$$O f(x) = g(x)$$

In most cases, the operators of quantum mechanics are linear. Operators are linear if they have properties:

$$O[f(x) + g(x)] = O f(x) + O g(x)$$

$$O c f(x) = c O f(x)$$

where c is a constant (c can be a complex number: $c = a + i b$, $i = \sqrt{-1}$)

Examples:

linear operators:

x (multiplication by x):

$$x[f(x) + g(x)] = x f(x) + x g(x)$$

$$\frac{d}{dx}$$ (differentiation with respect to x):

$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx} f(x) + \frac{d}{dx} g(x)$$

A nonlinear operator: $\sqrt{}$ (square root operator):

$$\sqrt{f(x) + g(x)} \neq \sqrt{f(x)} + \sqrt{g(x)}$$

The eigenvalues and eigenfunctions of an operator A are those numbers a_j and functions ϕ_j which satisfy

$$A \phi_j = a_j \phi_j$$

where j is just a label for the various eigenfunctions and corresponding eigenvalues which satisfy this equation. In other words, when A operates on one of its eigenfunctions, say ϕ_3, the result is $a_3 \phi_3$ - just ϕ_3 back again, multiplied by the eigenvalue a_3.
Note that if we multiply an eigenfunction of a linear operator by a constant c we still have an eigenfunction:

$$\text{if } A \phi_j = a_j \phi_j$$

then $$A(c \phi_j) = cA \phi_j = c(a_j \phi_j) = a_j(c \phi_j)$$

so that an eigenfunction ϕ_j and the function $\chi_j = c \phi_j$ are not considered as independent eigenfunctions. (i.e., Since any eigenfunction is still an eigenfunction when multiplied by a constant, eigenfunctions which differ only by a multiplicative constant are not considered to be “distinct”.)

Examples:

(1) The operator $\frac{d}{dx}$ has an eigenfunctions e^{kx} with eigenvalues k:

$$\frac{d}{dx} e^{kx} = ke^{kx}$$

where k may take on any value.

(2) The operator $\left\{ x \frac{d}{dx} \right\}$ also has an infinite set of eigenfunctions

$$\left\{ x^n; n=1,2,\ldots,\infty, n \text{ may be nonintegral} \right\}$$:

$$\left\{ x \frac{d}{dx} \right\} x^n = x(nx^{n-1}) = nx^n$$

This example allows us to demonstrate that a linear combination of eigenfunctions is not an eigenfunction (unless the two eigenfunctions have the same eigenvalue). For example, there is no number c which satisfies the equation:

$$\left\{ x \frac{d}{dx} \right\} [x^2 + x^3] = c[x^2 + x^3]$$

(3) The operator $\left\{ \frac{d^2}{dx^2} \right\}$ has a set eigenfunctions of the form

$$\left\{ \cos kx; k = \text{real number} \right\} \text{ and } -k^2 \text{ is the eigenvalue:}$$

$$\frac{d^2}{dx^2} [\cos kx] = \frac{d}{dx} [-k \sin kx] = -k^2 [\cos kx]$$

Note that the set of functions $\left\{ \sin kx; k = \text{any real number} \right\}$ are also eigenfunctions with the same eigenvalue:

$$\left\{ \frac{d^2}{dx^2} \right\} [\sin kx] = \frac{d}{dx} [k \cos kx] = -k^2 [\sin kx]$$
Therefore, for any given value of \(k \), \(\cos kx \), and \(\sin kx \) are eigenfunctions of \(\frac{d^2}{dx^2} \) with the same eigenvalue \(-k^2 \). This means that any combination of \(\cos kx \) and \(\sin kx \) is also an eigenfunction

\[
\frac{d^2}{dx^2} [a \cos kx + b \sin kx] = -k^2 [a \cos kx + b \sin kx]
\]

In particular, if \(a = 1 \) and \(b = i = \sqrt{-1} \) we have

\[
\frac{d^2}{dx^2} [\cos kx + i \sin kx] = \frac{d^2}{dx^2} [e^{ikx}] = -k^2 [e^{ikx}]
\]

so that \(\{e^{ikx} ; k = \text{any real number}\} \) is an alternative set of eigenfunctions of \(\frac{d^2}{dx^2} \).

Commutators

The *commutator* of two operators \(A \) and \(B \) is defined as

\[
[A, B] = AB - BA
\]

if \([A, B] = 0 \), then \(A \) and \(B \) are said to *commute*. In general, quantum mechanical operators can not be assumed to commute.

Examples:

When evaluating the commutator for two operators, it useful to keep track of things by operating the commutator on an arbitrary function, \(f(x) \).

(1) evaluate \(x, \frac{d}{dx} \):

\[
\left[x, \frac{d}{dx} \right] f(x) = \left(x \frac{d}{dx} - \frac{d}{dx} x \right) f(x)
\]

\[
= x \frac{df(x)}{dx} - \frac{d}{dx} (xf(x)) = x \frac{df(x)}{dx} - x \frac{df(x)}{dx} - f(x) \frac{dx}{dx} x = -f(x)
\]

\[
\left[x, \frac{d}{dx} \right] f(x) = -f(x) \quad \Rightarrow \quad x, \frac{d}{dx} = -1
\]

We see that the effect of operating on any arbitrary \(f(x) \) with \(x, \frac{d}{dx} \) is to produce \(-f(x)\), so that the last equation is generally true.
(2) In quantum mechanics, the operator for linear momentum in the \(x \) direction is \(\hat{p}_x = \frac{\hbar}{i} \frac{d}{dx} \) (where \(\hbar = \hbar/2\pi \)). Let's evaluate \([x, \hat{p}_x]\):

\[[x, \hat{p}_x] = x\hat{p}_x - \hat{p}_x x = \frac{\hbar}{i} \left(x \frac{d}{dx} - \frac{d}{dx} x \right) \]

\[= \frac{\hbar}{i} \left[x, \frac{d}{dx} \right] = -\frac{\hbar}{i} = i\hbar \]

(3) In classical mechanics, the angular momentum of a particle around the origin is a vector quantity, \(\mathbf{L} \), which is defined as \(\mathbf{L} = \mathbf{r} \times \mathbf{p} \),

\[
\mathbf{L} = \begin{vmatrix}
\hat{x} & \hat{y} & \hat{z} \\
x & y & z \\
p_x & p_y & p_z
\end{vmatrix}
\]

so, identifying the components of \(\mathbf{L} \),

\[L_x = yp_z - zp_y \] ; \[L_y = zp_x - xp_z \] ; \[L_z = xp_y - yp_x \]

which are the components of a single particle’s angular momentum. To get the quantum mechanical operators for \(\mathbf{L} \), we insert the quantum mechanical operators for the linear momenta to obtain:

\[
\hat{L}_x = \frac{\hbar}{i} \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) \] ; \[\hat{L}_y = \frac{\hbar}{i} \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right) \] ; \[\hat{L}_z = \frac{\hbar}{i} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) \]

The reader should use these expressions to operate on an arbitrary function \(f(x, y, z) \) to evaluate the commutators

\[[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z \] ; \[[\hat{L}_y, \hat{L}_z] = i\hbar \hat{L}_x \] ; \[[\hat{L}_z, \hat{L}_x] = i\hbar \hat{L}_y \]

Quantum Mechanical Operators and Wavefunctions

If \(\varphi \) is to be considered a "well behaved" function, then we demand that it have the following properties:

(a) \(\varphi \) must be continuous (no "breaks")

(b) \(\varphi \) must have continuous derivatives (no "kinks")

(c) \(\varphi \) must be normalizable. To be normalizable, \(\varphi \) must obey the condition (the symbol \(d\tau \) symbolizes integration over all space):

\[\int \varphi^* \varphi d\tau = C, \text{ where } C \text{ is a finite constant.} \]
Then we can normalize φ if we multiply by $\frac{1}{\sqrt{C}}$:

$$\int \left(\frac{\varphi^* \sqrt{C}}{\sqrt{C}} \right) \left(\frac{\varphi \sqrt{C}}{\sqrt{C}} \right) d\tau = 1.$$

Of central importance is the time-independent Schrödinger equation

$$\mathcal{H} \Psi = E \Psi,$$

where \mathcal{H} is the Hamiltonian (or energy) operator for the system. Ψ is called the wavefunction or state function for the system and must be "well behaved" in the sense indicated above. In quantum mechanics, physically observable quantities are associated with Hermitian operators (e.g., the energy of the system, the momentum of the system or of particles within the system, the position of particles in the system, etc.) If an operator A is Hermitian it has the property

$$\int \varphi^* A \chi d\tau = \int \chi (A \varphi)^* d\tau,$$

for all well behaved functions φ and χ.

If a system is in a state described by Ψ, then the expectation value we would observe for the property associated with the Hermitian operator A is given by

$$\langle A \rangle = \int \Psi^* A \Psi d\tau,$$

if it is a physically observable quantity, it must real:

$$\langle A \rangle^* = \langle A \rangle \text{ so } \int \Psi^* A \Psi d\tau = \int \Psi (A \Psi)^* d\tau.$$

Thus, the Hermitian property of operators associated with observables guarantees that calculated quantities for these observables will be real.

Example: Is \hat{p}_x Hermitian?

$$\int_{-\infty}^{\infty} \Psi^* \hat{p}_x \Psi dx = \int_{-\infty}^{\infty} \Psi^* \left(\frac{\hbar}{i} \frac{d}{dx} \Psi \right) dx = \frac{\hbar}{i} \int_{-\infty}^{\infty} \Psi^* \left(\frac{d}{dx} \Psi \right) dx =$$

(Integrate by parts, $\int u dv = uv \bigg|_{-\infty}^{\infty} - \int v du$)

$$= \frac{\hbar}{i} \Psi \Psi^* \bigg|_{-\infty}^{\infty} - \frac{\hbar}{i} \int_{-\infty}^{\infty} \Psi \left(\frac{d}{dx} \Psi^* \right) dx = \int_{-\infty}^{\infty} \Psi \left(\frac{\hbar}{i} \frac{d}{dx} \Psi \right)^* dx = \int_{-\infty}^{\infty} \Psi (\hat{p}_x \Psi^*) dx$$

note that if \hat{p}_x didn't have the factor of i in front, it wouldn't be Hermitian.
Orthogonality (Definition):

two functions φ and χ are said to be orthogonal if

$$\int \varphi^* \chi \, d\tau = 0$$

Important property of Hermitian Operators: Eigenfunctions of a Hermitian operator are orthogonal. (In the case where two or more eigenfunctions have the same eigenvalue, then the eigenfunctions can be made to be orthogonal).

proof: suppose φ_i and φ_j are eigenfunctions of A with respective eigenvalues a_i and a_j such that $a_i \neq a_j$.

$$A \varphi_i = a_i \varphi_i$$

$$A \varphi_j = a_j \varphi_j$$

By use of the Hermitian property we get:

$$\int \varphi_i^* A \varphi_j \, d\tau = \int \varphi_j (A \varphi_i)^* \, d\tau,$$

now operate with A on both sides of the equation:

$$a_j \int \varphi_i^* \varphi_j \, d\tau = a_i \int \varphi_j \varphi_i^* \, d\tau.$$

a_i is real because A is Hermitian. Then we have

$$(a_i - a_j) \int \varphi_j \varphi_i^* \, d\tau = 0.$$

$$\therefore \int \varphi_j \varphi_i^* \, d\tau = 0.$$

Now, if $a_i = a_j$, then we are free to combine φ_i and φ_j and we will still have an eigenfunction (see the example concerning $\frac{d^2}{dx^2}$ above). For example, suppose φ_1 and φ_2 both have eigenvalue a with respect to operator A. Then we can take

$$\chi_1 = \varphi_1 \text{ and } \chi_2 = \varphi_2 + c \varphi_1$$

and we can choose $c = -\int \varphi_1^* \varphi_2 \, d\tau / \int \varphi_1^* \varphi_1 \, d\tau$.

You can show that χ_1 and χ_2 are orthogonal and both still have eigenvalue a.

QED.
Very Important Fact:

Commuting operators have common eigenfunctions.

Suppose \(A \) and \(B \) commute: \([A, B] = AB - BA = 0\).

Let \(\{\varphi_i\} \) be the set of eigenfunctions of \(A \):

\[
A\varphi_i = a_i\varphi_i
\]

then, \(B(A\varphi_i) = B(a_i\varphi_i) = a_i(B\varphi_i) \)

but \(AB = BA \) so \(A(B\varphi_i) = a_i(B\varphi_i) \)

\(\therefore \) the function \(B\varphi_i \) is an eigenfunction of \(A \) with eigenvalue \(a_i \). If \(\varphi_i \) is the only eigenfunction of \(A \) with eigenvalue \(a_i \), then \(B\varphi_i \propto \varphi_i \) (in other words, \(B\varphi_i \) can only be an eigenfunction of \(A \) with eigenvalue \(a_i \) if it differs from \(\varphi_i \) by a constant multiplicative factor – p. 2 of this handout). Thus,

\[
B\varphi_i = b_i\varphi_i \text{ for some constant } b_i.
\]

If \(a_i \) is a degenerate eigenvalue, i.e. there are more than one eigenfunctions of \(A \) with eigenvalue \(a_i \), then we can take linear combinations of these eigenfunctions to satisfy this condition.