Characteristic Vectors

1

If V is a finite-dimensional vector space and T is a linear transformation from V into V, then, as was shown in Section 1, T can be represented, in terms of coordinates with respect to a given basis, as multiplication by a matrix A. The choice of a different basis results in a different matrix B, which is similar to A. In the next two sections, we shall discuss the problem of finding, if possible, a basis such that the matrix B is diagonal. In this section a concept is presented that will be useful in those later discussions.

We say that a vector $\overline{\mathbf{v}}$ is a **characteristic vector** for T and that $\dot{\lambda}$ is a **characteristic value** of T if

$$T\overline{\mathbf{v}} = \lambda \overline{\mathbf{v}}$$
 and $\overline{\mathbf{v}} \neq \overline{\mathbf{0}}$

In other words, a nonzero vector $\overline{\mathbf{v}}$ is a characteristic vector if $T\overline{\mathbf{v}}$ is a multiple of $\overline{\mathbf{v}}$.

This concept gives a useful formulation of the problem of finding a diagonal matrix representation for T, for

Suppose T is a linear transformation from V into V and that the matrix B of T with respect to the basis $\bar{\mathbf{u}}_1$, $\bar{\mathbf{u}}_2, \ldots, \bar{\mathbf{u}}_n$ is diagonal. Then each $\bar{\mathbf{u}}_i$ is a characteristic vector for T, and the diagonal entries of B are the corresponding characteristic values.

To simplify the proof of this result assume that n=2. The columns of the matrix B are the coordinates of $T\bar{u}_1$ and $T\bar{u}_2$ with respect to the basis \bar{u}_1 , \bar{u}_2 . (See formula 6, page 239.) Therefore

$$B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
 where $T\bar{\mathbf{u}}_1 = B_{11}\bar{\mathbf{u}}_1 + B_{21}\bar{\mathbf{u}}_2$ $T\bar{\mathbf{u}}_2 = B_{12}\bar{\mathbf{u}}_1 + B_{22}\bar{\mathbf{u}}_2$

Thus, if B is diagonal, then $B_{12} = B_{21} = 0$, and therefore

$$T\bar{\mathrm{u}}_{1}=B_{11}\bar{\mathrm{u}}_{1} \quad \text{and} \quad T\bar{\mathrm{u}}_{2}=B_{22}\bar{\mathrm{u}}_{2}$$

The vectors $\bar{\mathbf{u}}_1$ and $\bar{\mathbf{u}}_2$ are independent and hence nonzero. We therefore conclude that $\bar{\mathbf{u}}_1$ and $\bar{\mathbf{u}}_2$ are characteristic vectors, with corresponding characteristic values B_{11} and B_{22} , the diagonal entries of B.

The converse of statement 1 is also true, because

If V has a basis $\bar{\mathbf{u}}_1, \, \bar{\mathbf{u}}_2, \, \ldots, \, \bar{\mathbf{u}}_n$ consisting of characteristic vectors for T, the matrix of T with respect to this basis is diagonal.

To simplify the proof of this, assume that n=2. Suppose $\bar{\mathbf{u}}_1$ and $\bar{\mathbf{u}}_2$ are a basis for V consisting of characteristic vectors for T. Therefore $T\bar{\mathbf{u}}_1$ is a multiple of $\bar{\mathbf{u}}_1$ and $T\bar{\mathbf{u}}_2$ is a multiple of $\bar{\mathbf{u}}_2$, so we can write

$$T\bar{\mathbf{u}}_1 = a\bar{\mathbf{u}}_1$$
 and $T\hat{\mathbf{u}}_2 = b\bar{\mathbf{u}}_2$

Rewrite this in the form

$$T\bar{\mathbf{u}}_1 = a\bar{\mathbf{u}}_1 + 0\bar{\mathbf{u}}_2$$
 and $T\bar{\mathbf{u}}_2 = 0\bar{\mathbf{u}}_1 + b\bar{\mathbf{u}}_2$

Thus the matrix of T with respect to $\bar{\mathbf{u}}_1$ and $\bar{\mathbf{u}}_2$ is the diagonal matrix

$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

Some examples will now be given to illustrate these concepts, after which a method for finding characteristic vectors and characteristic values will be discussed.

EXAMPLE 1 Geometric methods can be used to find characteristic vectors and characteristic values for rotations, reflections, and projections. These make use of the fact that a nonzero vector $\overline{\mathbf{v}}$ is a characteristic vector for T if and only if $T\overline{\mathbf{v}}$ is a multiple of $\overline{\mathbf{v}}$.

Suppose T is a counterclockwise rotation in R^2 through the angle θ and that θ is *not* a multiple of \overline{v} . If $\overline{v} \neq \overline{0}$, $T\overline{v}$ cannot be a multiple of \overline{v} , as shown in Figure 1.

Figure 1

This fact establishes that

A rotation through θ has no characteristic vectors, if θ is not a multiple of π .

Suppose $\theta = \pi$. Then, as Figure 2 indicates, for *every* nonzero vector $\overline{\mathbf{v}}$ we have $T\overline{\mathbf{v}} = -\overline{\mathbf{v}}$. Since this is also true if θ is any odd multiple of π , we know that

If θ is an odd multiple of π , then every nonzero vector is a characteristic vector belonging to the characteristic value $\lambda = -1$.

If θ is an even multiple of π , then T is just the identity operator. Thus for every nonzero vector $\overline{\mathbf{v}}$ we have $T\overline{\mathbf{v}} = \overline{\mathbf{v}}$. In other words,

If θ is an even multiple of π then every nonzero vector is a characteristic vector belonging to the characteristic value $\lambda = 1$.

EXAMPLE 2

Suppose T is the projection in R^2 onto the nonzero vector $\overline{\mathbf{w}}$. A vector parallel to $\overline{\mathbf{w}}$ is left fixed by T; that is, if $\overline{\mathbf{v}}$ is a multiple of $\overline{\mathbf{w}}$, $T\overline{\mathbf{v}} = \overline{\mathbf{v}}$. This shows that every nonzero multiple of $\overline{\mathbf{w}}$ is a characteristic vector belonging to the characteristic value $\lambda = 1$.

If \overline{v} is orthogonal to \overline{w} , then $T\overline{v}=\overline{0}$. Since $\overline{0}=0\overline{v}$, this statement shows that every nonzero vector \overline{v} which is orthogonal to \overline{w} is a characteristic vector belonging to the characteristic value $\lambda=0$.

If \overline{v} is neither parallel nor orthogonal to \overline{w} , then, as Figure 3 indicates, $T\overline{v}$ is not parallel to \overline{v} , and such a vector \overline{v} cannot be a characteristic vector.

In summary, we have shown that

The projection T onto \overline{w} has the characteristic values $\lambda=0$ and $\lambda=1$. The nonzero multiples of \overline{w} are the characteristic vectors belonging to $\lambda=1$, and the nonzero vectors orthogonal to \overline{w} are the characteristic vectors belonging to $\lambda=0$.

Figure 3

DISCUSSION

We extend our terminology to matrices by saying that a vector $\overline{\mathbf{v}}$ (written as a column matrix) is a **characteristic vector** for A belonging to the **characteristic value** λ if

$$A\overline{\mathbf{v}} = \lambda \overline{\mathbf{v}}$$
 and $\overline{\mathbf{v}} \neq \overline{\mathbf{0}}$

Since $I\bar{v} = \bar{v}$, we can rewrite the equation $A\bar{v} = \lambda \bar{v}$ as

$$(\lambda I - A)\overline{v} = \overline{0}$$

Therefore, if $\bar{\mathbf{v}}$ is a characteristic vector for A belonging to λ , it follows that $\bar{\mathbf{v}}$ is a nonzero solution to $(\lambda I - A)\bar{\mathbf{u}} = \bar{\mathbf{0}}$; that is, $\bar{\mathbf{v}}$ is a nonzero vector in the null space of $\lambda I - A$. Such a $\bar{\mathbf{v}}$ can exist only if $\lambda I - A$ is not invertible (Theorem 11, page 188). We therefore have established that

If $\overline{\mathbf{v}}$ is a characteristic vector for A belonging to λ , $\lambda I - A$ is not invertible.

If $\lambda I - A$ is not invertible and \overline{v} is a nonzero vector such that $(\lambda I - A)\overline{v} = \overline{0}$, we can then rewrite this equation to conclude that $A\overline{v} = \lambda \overline{v}$ and $\overline{v} \neq \overline{0}$. This shows that

If $\lambda I - A$ is not invertible, any nonzero vector $\overline{\mathbf{v}}$ in the null space of $\lambda I - A$ is a characteristic vector belonging to the characteristic value λ .

We know from Theorem 14 that $\lambda I - A$ is not invertible if and only if $\det(\lambda I - A) = 0$. The function

$$f(\lambda) = \det(\lambda I - A)$$

is called the **characteristic polynomial** of A. In summary:

THEOREM 15 The characteristic values of A are the roots of the characteristic polynomial $f(\lambda) = \det(\lambda I - A)$. If λ is a root of this polynomial, then any nonzero vector in the null space of $\lambda I - A$ is a characteristic vector belonging to λ .

We have previously noted that f is indeed a polynomial whose degree is the size of A. (See Example 4, page 222.)

EXAMPLE 3 Theorem 15 provides a method for finding the characteristic values and corresponding characteristic vectors for a matrix. For example, suppose

$$A = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix}$$

Form the matrix

$$\lambda I - A = \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} \lambda - 3 & 1 \\ -2 & \lambda \end{bmatrix}$$

and take its determinant to obtain the characteristic polynomial of A:

$$f(\lambda) = \det(\lambda I - A)$$

$$= (\lambda - 3)\lambda + 2$$

$$= \lambda^2 - 3\lambda + 2$$

$$= (\lambda - 2)(\lambda - 1)$$

Since the roots of $f(\lambda)$ are $\lambda=2$ and $\lambda=1$, Theorem 15 tells us that these are the characteristic values of A. We then find the corresponding characteristic vectors by finding the nonzero vectors in the null spaces of 2I-A and 1I-A. We have

$$2I - A = 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -2 & 2 \end{bmatrix}$$
$$1I - A = 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ -2 & 1 \end{bmatrix}$$

which reduce, respectively, to

$$\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 0 \end{bmatrix}$$

We see that

$$ar{\mathrm{v}}_1 = egin{bmatrix} 1 \\ 1 \end{bmatrix} \quad ext{ and } \quad ar{\mathrm{v}}_2 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$$

are respective bases for the null spaces of 2I - A and 1I - A. Therefore,

The characteristic values of A are $\lambda=2$ and $\lambda=1$. The nonzero multiples of \bar{v}_1 are the characteristic vectors belonging to $\lambda=2$, while the nonzero multiples of \bar{v}_2 are the characteristic vectors belonging to $\lambda=1$.

This information will be used in the next section to show that A is similar to

$$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

EXAMPLE 4 In using Theorem 15 it is necessary to calculate $\det(\lambda I - A)$. This can be done using the definition of determinant. (See formula 2, page 217.) The formulas of Exercise 10, page 230, are, however, worth remembering:

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then det $(\lambda I - A) = \lambda^2 - (a+d)\lambda + ad - bc$

If
$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$
 then

7
$$\det (\lambda I - A) = \lambda^3 - (A_{11} + A_{22} + A_{33})\lambda^2 + \left\{ \det \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} + \det \begin{bmatrix} A_{11} & A_{13} \\ A_{31} & A_{33} \end{bmatrix} + \det \begin{bmatrix} A_{22} & A_{23} \\ A_{32} & A_{33} \end{bmatrix} \right\} \lambda$$
$$- \det A$$

For example, if

$$A = \begin{bmatrix} 8 & 9 & 9 \\ 3 & 2 & 3 \\ -9 & -9 & -10 \end{bmatrix}$$

formula 7 gives

$$\det (\lambda I - A) = \lambda^3 - (8 + 2 - 10)\lambda^2$$

$$+ \left\{ \det \begin{bmatrix} 8 & 9 \\ 3 & 2 \end{bmatrix} + \det \begin{bmatrix} 8 & 9 \\ -9 & -10 \end{bmatrix} + \det \begin{bmatrix} 2 & 3 \\ -9 & -10 \end{bmatrix} \right\} \lambda$$

$$- \det A$$

Calculation of these determinants gives

$$\det (\lambda I - A) = \lambda^3 - 3\lambda - 2 = (\lambda + 1)^2(\lambda - 2)$$

Theorem 15 then tells us that the characteristic values of A are $\lambda=-1$ and $\lambda=2$. Corresponding characteristic vectors are found by finding the nonzero vectors in the null spaces of -1I-A and 2I-A.

EXAMPLE 5 The characteristic values of an upper (or lower) triangular matrix are easy to find. For example, if

$$A = \begin{bmatrix} 2 & 0 & 1 & 2 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

then

$$f(\lambda) = \det (\lambda I - A) = \det \begin{bmatrix} \lambda - 2 & 0 & -1 & -2 \\ 0 & \lambda - 2 & 1 & -3 \\ 0 & 0 & \lambda + 3 & -1 \\ 0 & 0 & 0 & \lambda - 4 \end{bmatrix}$$

The determinant of an upper triangular matrix is the product of the diagonal entries. (See property 4c, page 218.) Therefore

$$f(\lambda) = (\lambda - 2)(\lambda - 2)(\lambda + 3)(\lambda - 4)$$

so that the characteristic values are 2, -3, and 4. In general,

The characteristic values of an upper (or lower) triangular matrix are the diagonal entries of the matrix.

EXERCISES

- 1 For each of the following operators T describe the characteristic values and vectors. Figures may be helpful.
 - a T is reflection in \mathbb{R}^2 through the line through $\overline{\mathbf{w}}$.
 - **b** T is projection in \mathbb{R}^2 orthogonal to $\overline{\mathbb{W}}$.
 - c T is reflection in \mathbb{R}^3 through the line through $\overline{\mathbf{w}}$.
 - **d** T is projection in \mathbb{R}^3 onto $\overline{\mathbf{w}}$.
 - **e** T is projection in R^3 orthogonal to $\overline{\mathbf{w}}$.
 - f T is counterclockwise rotation in R^2 through $\pi/4$ followed by reflection in the x-axis.
- 2 Suppose Df = f'. Show that every real number is a characteristic value of D. [Hint: Calculate $D(e^{ax})$.]

3 Show that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ are characteristic vectors for $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

What are the corresponding characteristic values?

4 Use Theorem 15 and formulas 6, 7, or 8 to find the characteristic polynomial and the characteristic values for each of the following matrices.

$$\mathbf{a} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \qquad \qquad \mathbf{b} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \qquad \qquad \mathbf{c} \begin{bmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\mathbf{d} \begin{bmatrix} 5 & 1 & 1 \\ -3 & 1 & -3 \\ -2 & -2 & 2 \end{bmatrix} \qquad \qquad \mathbf{e} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix} \qquad \qquad \mathbf{f} \begin{bmatrix} 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- 5 For each of the matrices of Exercise 4 find at least one characteristic vector for each characteristic value.
- 6 Show that $\begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix}$ has no real characteristic values. (See also Exercise 11.)
- 7 **a** Show that if $A\overline{v} = \lambda \overline{v}$, then $A^2\overline{v} = \lambda^2\overline{v}$.
 - **b** Suppose $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the characteristic values of A. What are the characteristic values of A^2 ?
 - c Suppose

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

What are the characteristic values of A^2 ? of A^3 ?

8 a Show that if $A\overline{v} = \lambda \overline{v}$, then

$$(A^3 - 3A^2 + A - 2I)\bar{v} = (\lambda^3 - 3\lambda^2 + \lambda - 2)\bar{v}$$

- **b** Suppose $q(\lambda)$ is a polynomial and $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the characteristic values of A. What are the characteristic values of q(A)? (Hint: See part **a**.)
- 9 a Show that similar matrices have the same characteristic polynomial. [Hint: $\lambda I P^{-1}AP = P^{-1}(\lambda I A)P$.]
 - **b** How would you define the characteristic polynomial of a linear transformation T from V into V? Does your definition depend upon the choice of basis for V?

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

What are the characteristic values of A? (Hint: See Exercise 9a.)

- ☐ 11 Show that $\begin{bmatrix} 2 \\ 1-i \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1+i \end{bmatrix}$ are complex characteristic vectors for $\begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix}$. What are the corresponding characteristic values? Compare this with Exercise 6.
- ☐ 12 Find the characteristic polynomial, the complex characteristic values, and at least one corresponding characteristic vector for each of the following.

a
$$\begin{bmatrix} 2-i & 2 \\ 1+3i & -1+3i \end{bmatrix}$$
 b $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

 \square 13 An important theorem, known as the Cayley-Hamilton Theorem, asserts that if $f(\lambda)$ is the characteristic polynomial of A, f(A) is the zero matrix. Verify that this is so for

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$