Characteristic Vectors

If V is a finite-dimensional vector space and 7 is a linear transformation
from V into V, then, as was shown in Section 1, T can be represented,
in terms of coordinates with respect to a given basis, as multiplication
by a matrix 4. The choice of a different basis results in a different matrix
B, which is similar to 4. In the next two sections, we shall discuss the
problem of finding, if possible, a basis such that the matrix B is diagonal.
In this section a concept is presented that will be useful in those later
discussions.

We say that a vector v is a characteristic vector for 7 and that X is a
characteristic value of 7 if

Tv=A and v # 0

In other words, a nonzero vector v is a characteristic vector if 7V is a
multiple of v.

This concept gives a useful formulation of the problem of finding a
diagonal matrix representation for 7, for '

Suppose T is a linear transformation from V into V and
that the matrix B of T with respect to the basis 0,

1 g, . . ., U, is diagonal. Then each G; is a characteristic
vector for 7, and the diagonal entries of B are the
corresponding characteristic values.
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To simplify the proof of this result assume that » = 2. The columns of
the matrix B are the coordinates of 70; and 7Ty with respect to the basis.
03, Ug. (See formula 6, page 239.) Therefore

Bi1  Bie Th; = Bty + Botg
= where
By By Tihy = Biol; + Baolig
Thus, if B is diagonal, then B;3 = Bs; = 0, and therefore
2 Tl_ll = Blll_ll and Tl_l2 = Bgzﬁg

The vectors @1; and Gy are independent and hence nonzero. We therefore
conclude that G; and G are characteristic vectors, with corresponding
characteristic values B;y; and Bss, the diagonal entries of B.

The converse of statement 1 is also true, because

If V has a basis 0y, g, . . ., U, consisting of characteristic
3 vectors for 7, the matrix of 7" with respect to this basis is
diagonal.

To simplify the proof of this, assume that n = 2. Suppose G; and Gy are
a basis for V consisting of characteristic vectors for 7. Therefore 70, is a
multiple of Gi; and TG is a multiple of Gig, so we can write

Th; = aty and Ty = buy
Rewrite this in the form
Th; = atuy + 00g and Tiy = 04; + by
Thus the matrix of T with respect to G; and Gy is the diagonal matrix
a 0
0 b

Some examples will now be given to illustrate these concepts, after which
a method for finding characteristic vectors and characteristic values will
be discussed.

Geometric methods can be used to find characteristic vectors and charac-
teristic values for rotations, reflections, and projections. These make use
of the fact that a nonzero vector v is a characteristic vector for 7 if and
only if 7'V is a multiple of v.

Suppose T is a counterclockwise rotation in R? through the angle 8 and
that 6 is not a multiple of m. If v 3 0, 7'V cannot be a multiple of v, as
shown in Figure 1.
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Figure 1

EXAMPLE 2

Figure 2
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Note that 7v = —v.

This fact establishes that

A rotation through 6 has no characteristic vectors, if 6
is not a multiple of .

Suppose 6 = . Then, as Figure 2 indicates, for every nonzero vector v
we have TV = —¥. Since this is also true if 8 is any odd multiple of T,
we know that

If 6 is an odd multiple of r, then every nonzero vector is
a characteristic vector belonging to the characteristic
value A = —1.

If 6 is an even multiple of , then T is just the identity operator. Thus
for every nonzero vector vV we have 7V = v. In other words,

If 6 is an even multiple of 7 then every nonzero vector is
a characteristic vector belonging to the characteristic
value A = 1.

Suppose T is the projection in R? onto the nonzero vector W. A vector
parallel to w is left fixed by T'; that is, if ¥ is a multiple of w, TV ='V.
This shows that every nonzero multiple of W is a characteristic vecfor
belonging to the characteristic value A = 1.

If v is orthogonal to W, then 7V = 0. Since 0 = 0V, this statement
shows that every nonzero vector v which is orthogonal to w is a charac-
teristic vector belonging to the characteristic value A = 0.

If v is neither parallel nor orthogonal to w, then, as Figure 3 indicates,
TV is not parallel to v, and such a vector Vv cannot be a characteristic
vector.

In summary, we have shown that

The projection 7" onto w has the characteristic values
A = 0 and A = 1. The nonzero multiples of W are the
characteristic vectors belonging to A = 1, and the non-
zero vectors orthogonal to W are the characteristic vectors
belonging to A = 0.
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We extend our terminology to matrices by saying that a vector v (written
as a column matrix) is a characteristic vector for 4 belonging to the
characteristic value \ if

AV = NV and v#0
Since IV = V, we can rewrite the equation Av = AV as
N —A4v=20

Therefore, if v is a characteristic vector for 4 belonging to A, it follows
that ¥ is a nonzero solution to (Al — 4)i = 0; that is, v is a nonzero
vector in the null space of Nl — 4. Such a Vv can exist only if AJ — 4 is
not invertible (Theorem 11, page 188). We therefore have established that

If v is a characteristic vector for 4 belonging to A\, \] — 4
is not invertible.

If A\l — Aisnotinvertible and v is a nonzero vector such that (XI — AW =
0, we can then rewrite this equation to conclude that A% = AV and
v #£ 0. This shows that

If A\l — 4 is not invertible, any nonzero vector V in the
5 null space of AI — A is a characteristic vector belonging
to the characteristic value A.

We know from Theorem 14 that A — A is not invertible if and only if
det(\] — A) = 0. The function

FO) = det(\] — 4)

is called the characteristic polynomial of 4. In summary:

The characteristic values of 4 are the roots of the characteristic
polynomial f(A) = det(A] — A4). If X is a root of this polynomial,
then any nonzero vector in the null space of A\l — 4 is a
characteristic vector belonging to A.

We have previously noted that f is indeed a polynomial whose degree is
the size of A. (See Example 4, page 222.)
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EXAMPLE 3

Theorem 15 provides a method for finding the characteristic values and
corresponding characteristic vectors for a matrix. For example, suppose

3 —1]

A:

Form the matrix
10 (3 —1] A—3 1

M— A=)\ — =
01 (2 0 -2 A

and take its determinant to obtain the characteristic polynomial of 4:

f(\) = det(M — 4)

=MN—3\+2
=N —3\+2
=\N—2)A—1)

Since the roots of f(A) are A = 2 and A = 1, Theorem 15 tells us that
these are the characteristic values of A. We then find the corresponding

characteristic vectors by finding the nonzero vectors in the null spaces of
2] — A and 17 — A. We have

10 3 -1 -1 1
2 — A4 =2 — =
0 1 2 0 -2 2
10 3 -1 -2 1
1II—A4=1 — =
0 1 2 0 -2 1
which reduce, respectively, to

1 -1 1 -1
and
0 0] 0 0
1 1
v 1 = and ;72 =
1] 2

are respective bases for the null spaces of 27 — 4 and 11 — A. Therefore,

We see that

The characteristic values of 4 are A = 2 and A = 1.
The nonzero multiples of ¥; are the characteristic vectors
belonging to A = 2, while the nonzero multiples of v,
are the characteristic vectors belonging to A = 1.
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This information will be used in the next section to show that A is similar

to
2 0
0 1
EXAMPLE 4  In using Theorem 15 it is necessary to calculate det(A\l — A4). This can be

done using the definition of determinant. (See formula 2, page 217.) The
formulas of Exercise 10, page 230, are, however, worth remembering:

a b
If A=
6 c d

thendet W — 4) = A2 — (¢ + d)\ + ad — be

Ay A As
If A= A21 A22 A23 then
Az; Azz  Ass
7 det (A — 4) = A* — (dig + Aoz + Agg)\®
Aiy Az Ay Ags Az A3
=+ {det + det + det A
A1 Ase Azr  Ass Az Ass
— det 4 '
For example, if
8 9 9
A= 3 2 3
-9 -9 10

formula 7 gives

det W[ — A) = N — (8 + 2 — 10)A?

8 9 8 9 2 3

+ {d[ ]+ det[ ]+det[ }}A
3 2 -9 —-10 -9 —10

— det 4

Calculation of these determinants gives

det W[ — A) =\ — 3y —2=(\ 4+ 1)\ — 2)
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EXAMPLE 5

EXERCISES

Theorem 15 then tells us that the characteristic values of 4 are A = —1
and A = 2. Corresponding characteristic vectors are found by finding
the nonzero vectors in the null spaces of —1/ — A4 and 21 — 4.

The characteristic values of an upper (or lower) triangular matrix are
easy to find. For example, if

2 0 1 2
0 2 -1 3
A=
0 0 -3 1
| 0 0 0 4
then
(A —2 0 -1 -2
0 AN—2 1 -3
f(A) = det (\] — A) = det
0 0 AN+ 3 -1
| 0 0 0 AN— 4

The determinant of an upper triangular matrix is the product of the
diagonal entries. (See property 4c, page 218.) Therefore

O =0N=2)0 =2)A +3)(A — 4

so that the characteristic values are 2, —3, and 4.

In general,

The characteristic values of an upper (or lower) trian-
gular matrix are the diagonal entries of the matrix.

1 For each of the following operators T describe the characteristic values and
vectors. Figures may be helpful.

T is reflection in R? through the line through w.

T is projection in R? orthogonal to W.

T is reflection in R3 through the line through w.

T is projection in R3 onto W.

T is projection in R3 orthogonal to W.

T is counterclockwise rotation in R? through /4 followed by reflection

in the x-axis.

-0 a0 e

2 Suppose Df = f'. Show that every real number is a characteristic value of D.
[Hint: Calculate D(e%%).]
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1 1 2 1
3 Show that [ ] and l: ] are characteristic vectors for 4 = [ ]
1 -1 1 2

What are the corresponding characteristic values?
4 Use Theorem 15 and formulas 6, 7, or 8 to find the characteristic polynomial

and the characteristic values for each of the following matrices.

_ 310
3 3 [3 1
a b c |1 3 0
|3 3 1 3
B |0 0 2
_ _ [0 1 2 1
5 1 1 1 2 1
0 013
d|-3 1 -3 e [0 2 1 f
0 0 0 1
| 2 -2 2 [0 0 3
00 0 O

5 For each of the matrices of Exercise 4 find at least one characteristic vector
for each characteristic value.

1 =2
6 Show that

] has no real characteristic values. (See also Exercise 11.)
1 -1

7 a Show that if AV = AV, then 427 = A\%7.
b Suppose Aj, Ag, . . ., A are the characteristic values of A. What are the
characteristic values of 42?

¢ Suppose
1 2 1
A=10 -1 0
0 0 3

What are the characteristic values of 42? of 43?

8 a Show that if 4V = AV, then
(A3 — 342 + 4 —2I)v = (B — 3\2 4+ N\ — 2)¥

b Suppose ¢(\) is a polynomial and Aj, Ag, . . ., A; are the characteristic
values of 4. What are the characteristic values of ¢(4)? (Hint: See parta.)

9 a Show that similar matrices have the same characteristic polynomiai.
[Hint: NI — P71AP = P~1(\I — A)P.]
b How would you define the characteristic polynomial of a linear trans-
formation T from V into V? Does your definition depend upon the choice
of basis for V?
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11

12

13

Suppose 4 is similar to

2 0 0
0 -1 0
0 0 3

What are the characteristic values of 4? (Hint: See Exercise 9a.)

2 2
Show that [ :| and [ } are complex characteristic vectors for
11— 1+

[ :l . What are the corresponding characteristic values? Compare this
1 -1

with Exercise 6.

Find the characteristic polynomial, the complex characteristic values, and
at least one corresponding characteristic vector for each of the following.

2—1 2 0 -1
a
143 —-143 1 0
An important theorem, known as the Cayley-Hamilton Theorem, asserts

that if f(\) is the characteristic polynomial of 4, f(A4) is the zero matrix.
Verify that this is so for
.
A=
1 3



