Lattices, Reciprocal Lattices and Diffraction

Chem 634
T. Hughbanks

References for this Topic

©Clegg, "Crystal Structure Determination".
\& Stout \& Jensen, "X-Ray Structure Determination", 2nd Edition. Instrumentation discussion is completely outdated, but still a good text on the subject.
A more authoritative general reference: Giacovazzo, et al., "Fundamentals of Crystallography", IUCr Texts on Crystallography.
\& MIT has a good site (MIT Open Courseware): http:// ocw.mit.edu/OcwWeb/Chemistry/ 5-841Fall-2006/LectureNotes/index.htm

1

Bravais Lattices

- Direct Lattice:
- A regular, periodic array of points with a spacing commensurate with the unit cell dimensions. The environment around each points in a lattice is identical.
- The set of direct lattice points can be written as (vectors): $\mathbf{R}=t \mathbf{a}+u \mathbf{b}+v \mathbf{c} \quad t, u, v$ integers
- $V=$ volume of unit cell

$$
\begin{gathered}
V=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})= \\
\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})
\end{gathered}
$$

Reciprocal Lattices

- Reciprocal Lattice: the basis vectors of the reciprocal lattice are defined as

$$
\mathbf{a}^{*}=\frac{\mathbf{b} \times \mathbf{c}}{V} ; \quad \mathbf{b}^{*}=\frac{\mathbf{c} \times \mathbf{a}}{V} ; \quad \mathbf{c}^{*}=\frac{\mathbf{a} \times \mathbf{b}}{V} ; \quad V=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}
$$

(Note: In physics texts, a factor of 2π is usually included

$$
\text { e.g., } \left.\mathbf{a}^{*}=2 \pi \frac{\mathbf{b} \times \mathbf{c}}{V} ; \quad \cdots\right)
$$

- The set of Reciprocal Lattice Vectors (RLVs) are written as

$$
\begin{gathered}
\mathbf{K}_{i}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*} \\
h, k, l=\text { integers }
\end{gathered}
$$

Reciprocal Lattices

- Properties of RLVs:

$$
\mathbf{a} \cdot \mathbf{a}^{*}=\mathbf{b} \cdot \mathbf{b}^{*}=\mathbf{c} \cdot \mathbf{c}^{*}=1
$$

$\mathbf{a}^{*} \cdot \mathbf{b}=\mathbf{a}^{*} \cdot \mathbf{c}=\mathbf{b}^{*} \cdot \mathbf{a}=\mathbf{b}^{*} \cdot \mathbf{c}=\mathbf{c}^{*} \cdot \mathbf{b}=\mathbf{c}^{*} \cdot \mathbf{a}=0$
Alternatively, these can be regarded as definitions.
In 2 dimensions, we define the RLVs
$\mathbf{a}^{*} \perp \mathbf{b}, \mathbf{b}^{*} \perp \mathbf{a}, \mathbf{a} \cdot \mathbf{a}^{*}=\mathbf{b} \cdot \mathbf{b}^{*}=1$

Side by Side (2-D)

DirectLattice
Reciprocal Lattice

- Although they "live in separate universes", the direct and reciprocal lattices are in rotational "lock-step".

6

Lattice \& Reciprocal Lattice

Example: BCC treated as Primitive

$$
\begin{aligned}
\mathbf{a}^{*} & =\frac{1}{a}(\hat{\mathbf{x}}+\hat{\mathbf{y}}) \\
\mathbf{b}^{*} & =\frac{1}{a}(\hat{\mathbf{y}}+\hat{\mathbf{z}}) \\
\mathbf{c}^{*} & =\frac{1}{a}(\hat{\mathbf{x}}+\hat{\mathbf{z}})
\end{aligned}
$$

Exercise: Find the reciprocal lattice of the reciprocal lattice!

If we use the conventional cell (which leaves out half the lattice points, the reciprocal lattice includes the 'open' points too:

$$
\mathbf{a}=a \hat{\mathbf{x}} ; \mathbf{b}=a \hat{\mathbf{y}} ; \mathbf{c}=a \hat{\mathbf{z}} \Rightarrow \mathbf{a}^{*}=\frac{\hat{\mathbf{x}}}{a} ; \mathbf{b}^{*}=\frac{\hat{\mathbf{y}}}{a} ; \mathbf{c}^{*}=\frac{\hat{\mathbf{z}}}{a}
$$

Interrelationships

- The direct lattice can be partitioned such that all of the lattice points lie on sets of planes. Crystallographers classify these sets of planes using the intercepts on the unit cell axes cut by the plane adjacent to the plane through the origin.
- The intercepts are of the form ($1 / h, 0,0),(0,1 / k$, 0), and ($0,0,1 / l$).
- These planes are normal to the RLVs

$$
\mathbf{K}_{h k l}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}
$$

Interrelationships

10

Interrelationships

$\mathbf{K}_{j} \cdot \mathbf{R}_{i}$ products involve no cross terms and always yield integers

- For any $\operatorname{DLV} \mathbf{R}_{i}$ and any $\operatorname{RLV} \mathbf{K}_{j}$

$$
\begin{aligned}
& \mathbf{R}_{i} \cdot \mathbf{K}_{j}=(t \mathbf{a}+u \mathbf{b}+v \mathbf{c}) \cdot\left(h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}\right) \\
&=t h+u k+v l=m, \quad \text { an integer } \\
& \Rightarrow \quad e^{2 \pi i \mathbf{R}_{i} \cdot \mathbf{K}_{j}}=1, \text { for all } \mathbf{R}_{i} \text { and all } \mathbf{K}_{j}
\end{aligned}
$$

14

Diffraction

- In handling scattering of x-rays (or electrons) by matter, we need to characterize the x-ray beam by specifying its wavelength and direction of propagation:

$$
\begin{aligned}
& \mathbf{E}=E_{0} \hat{\mathbf{x}} \\
& \mathbf{H}=H_{0} \hat{\mathbf{y}} \\
& \mathbf{k}=k \hat{\mathbf{z}} \\
& \hat{\mathbf{E}}_{0} \times \hat{\mathbf{H}}_{0}=\hat{\mathbf{k}} \\
& \mathbf{H}=\mathbf{H}_{0} \exp \{2 \pi i(\mathbf{k} \cdot \mathbf{r}-v t)\} \\
& \operatorname{Re} \mathbf{H}=\mathbf{H}_{0} \cos \{2 \pi(\mathbf{k} \cdot \mathbf{r}-v t)\} \\
& \mathbf{E}=\mathbf{E}_{0} \exp \{2 \pi i(\mathbf{k} \cdot \mathbf{r}-v t)\} \\
& \operatorname{Re}=\mathbf{E}_{0} \cos \{2 \pi(\mathbf{k} \cdot \mathbf{r}-v t)\}
\end{aligned}
$$

Additional Comments

- In order to speak of the localization of an electron (or photon), we must 'blur' the specification of the electron's (photon's) wavelength, and allow that there is some uncertainty in the wavelength (and frequency and energy):

$$
E_{k}(z, t)=\int_{-\infty}^{\infty} E_{0}\left(k^{\prime}\right) \exp \left\{2 \pi i\left(k^{\prime} z-v t\right)\right\} d k^{\prime}
$$

where we have assumed, for simplicity, that the wave is propagating along the z-axis and $E_{0}(k)$ is a function strongly peaked near a particular 'approximate' wavenumber k.

- Electrons and photons are different in that wave packets for electrons spread out over time, while photon wave packets retain their width as they propagate. For more details, see:
http://farside.ph.utexas.edu/teaching/qmech/lectures/node1.html

Elastic Scattering

- When an x-ray is scattered by an atom it may emerge in any direction, but unless absorption occurs, it has the same wavelength:

$$
|\mathbf{k}|=\left|\mathbf{k}^{\prime}\right|=\frac{1}{\lambda}
$$

- X-ray diffraction for structure determination is concerned with interference effects that result from scattering by periodic arrays of atoms.

Traveling wave packet

- By "adding" up a narrow range of frequencies, a "wave packet" can be constructed and a photon visualized.

http://farside.ph.utexas.edu/teaching/qmech/lectures/node1.html
18

Interference - "Time Lapse" pictures

 exercise, not "reality".

Atomic Form Factors: $f(2 \theta)$

water ripples

- The "water ripples" concept is not actually accurate; forward scattering is actually more intense.

21
"Thermal" effects: $f^{\prime}(2 \theta)$

- Vibrational motion "spreads out" average electron density and causes effective scattering at higher angles to fall off more rapidly; U is the isotropic displacement parameter (units of \AA^{2}).

$f_{j}^{\prime}(2 \theta)=f_{j}(2 \theta) \cdot \exp \left(\frac{-8 \pi^{2} U \sin ^{2} \theta}{\lambda^{2}}\right)$
Again, scattering at higher angles is attenuated by spreading out the electron density

Clegg, p. 24.

22

Interference between scatterers

Consider the interference between two scatterers, separated by a vector d:
$\hat{\mathbf{k}}=\frac{\mathbf{k}}{|\mathbf{k}|}$
$\hat{\mathbf{k}}^{\prime}=\frac{\mathbf{k}^{\prime}}{\left|\mathbf{k}^{\prime}\right|}$
$|\mathbf{k}|=\left|\mathbf{k}^{\prime}\right|=\frac{1}{\lambda}$ or $\hat{\mathbf{k}}=\lambda \mathbf{k}$

Interference between scatterers

Consider the interference between two scatterers, separated by a vector d:

$$
\begin{aligned}
& \hat{\mathbf{k}}=\frac{\mathbf{k}}{|\mathbf{k}|} \\
& \hat{\mathbf{k}^{\prime}}=\frac{\mathbf{k}^{\prime}}{\left|\mathbf{k}^{\prime}\right|} \\
& |\mathbf{k}|=\left|\mathbf{k}^{\prime}\right|=\frac{1}{\lambda} \text { or } \hat{\mathbf{k}}=\lambda \mathbf{k}
\end{aligned}
$$

$\hat{\mathbf{k}}=\frac{\mathbf{k}}{|\mathbf{k}|}-\mathrm{a}$ unit vector in the \mathbf{k} direction
$\hat{\mathbf{k}}=\frac{\mathbf{k}^{\prime}}{\left|\mathbf{k}^{\prime}\right|}$
path length difference $=\mathbf{d} \cdot\left(\hat{\mathbf{k}}-\hat{\mathbf{k}}^{\prime}\right)$

Interference between

scatterers

- Amplitude of scattered wave
$\propto f_{1}(2 \theta)+f_{2}(2 \theta) \cdot($ phase shift factor $)$
- The phase shift factor depends on the path length difference =

$$
\hat{\mathbf{k}} \cdot \mathbf{d}+\left(-\hat{\mathbf{k}}^{\prime}\right) \cdot \mathbf{d}=\left(\hat{\mathbf{k}}-\hat{\mathbf{k}}^{\prime}\right) \cdot \mathbf{d}
$$

- For completely constructive interference, where n is some integer:

$$
\left(\hat{\mathbf{k}}-\hat{\mathbf{k}}^{\prime}\right) \cdot \mathbf{d}=n \lambda \quad \text { or } \quad\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{d}=n
$$

- For completely destructive interference

$$
\text { Clegg, Sec. 1-6. } \quad\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{d}=n+\frac{1}{2}
$$

26

- In a crystal, all pairs of translationally equivalent atoms are separated by some direct Lattice Vector $\left(\mathbf{R}_{i}\right)$.
\therefore If all atoms in the crystal that are related by translational symmetry are to scatter X-rays to give constructive interference simultaneously, we must have the following:

$$
\mathbf{R}_{i} \cdot\left(\mathbf{k}-\mathbf{k}^{\prime}\right)=n \text { or } e^{2 \pi i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{R}}=1
$$

where \mathbf{R}_{i} is any DLV.

The beam is diffracted by a RLV!

This places conditions on the possible vectors $\mathbf{k}-\mathbf{k}^{\prime}$ that are exactly the same as the conditions used to define RLVs. We therefore obtain the Laue condition for diffraction:
$\mathbf{k}-\mathbf{k}^{\prime}=\mathbf{K}_{j}$ where \mathbf{K}_{j} is some RLV

29

Bragg View

Incident Beams REFLECTED BEAMS

Path Differences between 1 and $2=\mathrm{AB}$
Path Differences between 1' and $2^{\prime}=B C$
Clegg, Secs. 1.4-1.5.

Optical Transforms; Fraunhofer Diffraction

- The diffraction phenomenon can demonstrated with monochromatic visible light by use of optical transforms.
- The phenomenon relies on interference effects, like X-ray diffraction, though the scattering mechanism is different.
- The interference phenomenon occurs when the spacing between scatterers is on the same order of magnitude as the wavelength of the light used.

33

Fraunhofer diffraction Bragg diffraction

For constructive interference, $d \sin \phi=n \lambda$

For constructive interference, $2(d \sin \theta)=n \lambda$

34

37

39

Ewald Construction

- Start with reciprocal lattice and the incident wavevector, \mathbf{k}, originating at $(h, k, l)=$ ($0,0,0$).
- Draw a sphere with the tip of \mathbf{k} at the center that contains the origin, $(0,0,0)$, on the sphere's surface.
- As the direction of \mathbf{k} is changed, other RLVs (\mathbf{K}_{j} 's) move through the surface which is the condition that a diffraction peak is observed.
Stout \& Jensen, Sec. 2.4.

- Reflections (\mathbf{K}_{j}^{\prime} 's) lie on the Ewald sphere to meet the the diffraction condition.
- As the relative orientation of the crystal and the incident Xray beam are varied, the direction (but not the length) of \mathbf{k} changes, and \mathbf{k} can in principal point any direction.
- Therefore, the "full sphere" of possible reflections has radius $2|\mathbf{k}|=2 k=2 / \lambda$. The spacings between the RLVs (RL points) $\propto 1 / a$ (or $1 / b$ or $1 / c$).

41

Laue Equations

$n \lambda=2 d_{h k} \sin \theta$;

$K_{h k l}^{2}=\left(4 / \lambda^{2}\right) \sin ^{2} \theta$ where $\mathbf{K}_{h l l}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}\left({ }^{(* * *)}\right.$
or $\left[1 / d^{2}\right]=\left(4 / \lambda^{2}\right) \sin ^{2} \theta$, since $K_{h k l}^{2}=\left[1 / d^{2}\right]$
The "Laue Equations" for each crystal class can be derived from the form (***)

Cubic

$\sin ^{2} \theta=A\left(h^{2}+k^{2}+l^{2}\right) ; A=\lambda^{2} / 4 a^{2} \quad$ or $\left[1 / d^{2}\right]=\left(h^{2}+k^{2}+l^{2}\right) / a^{2}$
Tetragonal
$\sin ^{2} \theta=A\left(h^{2}+k^{2}\right)+C l^{2} ; A=\lambda^{2} / 4 a^{2} ; C=\lambda^{2} / 4 c^{2}$
or $\left[1 / d^{2}\right]=\left(h^{2}+k^{2}\right) / a^{2}+l^{2} / c^{2}$
Hexagonal
$\sin ^{2} \theta=A\left(h^{2}+h k+k^{2}\right)+C l^{2} ; A=\lambda^{2} / 3 a^{2} ; C=\lambda^{2} / 4 c^{2}$
or $\left[1 / d^{2}\right]=4\left(h^{2}+k^{2}\right) / 3 a^{2}+l^{2} / c^{2}$
Orthorhombic
$\sin ^{2} \theta=A h^{2}+B k^{2}+C l^{2} ; A=\lambda^{2} / 4 a^{2} ; B=\lambda^{2} / 4 b^{2} ; C=\lambda^{2} / 4 c^{2}$
or $\left[1 / d^{2}\right]=h^{2} / a^{2}+k^{2} / b^{2}+l^{2} / c^{2}$
$\mathbf{k}-\mathbf{k}^{\prime}=\mathbf{K}_{j} \quad \Rightarrow \quad-\mathbf{k}^{\prime}=\mathbf{K}_{j}-\mathbf{k}$
Use to get
$\Rightarrow \mathbf{k}^{\prime} \cdot \mathbf{k}^{\prime}=\left(\mathbf{K}_{j}-\mathbf{k}\right) \cdot\left(\mathbf{K}_{j}-\mathbf{k}\right)$
Laue equations
$\mathbf{K}^{2}=\mathbf{K}_{j}^{2}-2 \mathbf{k} \cdot \mathbf{K}_{j}+\mathbf{K}^{\prime 2}$
$\therefore 2 \mathbf{k} \cdot \mathbf{K}_{j}=\mathbf{K}_{j}{ }^{2}$
$2 k\left|\mathbf{K}_{j}\right| \underbrace{\cos (\pi / 2-\theta)}_{\sin (\theta)}=\left|\mathbf{K}_{j}\right|^{\not 2} \Rightarrow 2 k \sin \theta=\left|\mathbf{K}_{j}\right| \Rightarrow \frac{2}{\lambda} \sin \theta=\left|\mathbf{K}_{j}\right|$
$\Rightarrow \frac{2}{\left|\mathbf{K}_{j}\right|} \sin \theta=\lambda \Rightarrow \frac{2}{n\left|\mathbf{K}_{h k l}\right|} \sin \theta=\lambda \Rightarrow 2 d_{h k l} \sin \theta=n \lambda$ Bragg's Law
In the last line we've used the fact that \mathbf{K}_{j} is a multiple of $\mathbf{K}_{h k l}$, which is the shortest RLV for which h, k, and l have no common factors.
i.e., $\mathbf{K}_{j}=n \mathbf{K}_{h k l}$, where $n=$ integer.

Laue Equations, cont.

Monoclinic

Monoclinic $\sin ^{2} \theta=A h^{2}+B k^{2}+C l^{2}-D h l$ $A=\lambda^{2} /\left(4 a^{2} \sin ^{2} \beta\right) ; B=\lambda^{2} / 4 b^{2} ;$	$K_{h k l}^{2}=\left(4 / \lambda^{2}\right) \sin ^{2} \theta$
C	where $\mathbf{K}_{h k l}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}\left({ }^{* * *)}\right.$

$\left(4 a^{2} \sin ^{2} \beta\right), B=\lambda / 4 b^{2} ;$
where $\mathbf{K}_{h k l}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}\left({ }^{* * *}\right)$
$C=\lambda^{2} /\left(4 c^{2} \sin ^{2} \beta\right) ; \quad D=\left(\lambda^{2} \cos \beta\right) /\left(2 a c \sin ^{2} \beta\right)$
or $\left[1 / d^{2}\right]=h^{2} /\left(a^{2} \sin ^{2} \beta\right)+k^{2} / b^{2}+l^{2} /\left(c^{2} \sin ^{2} \beta\right)-2 h l \cos \beta /\left(a c \sin ^{2} \beta\right)$
Triclinic

$$
\sin ^{2} \theta=\left(\lambda^{2} / 4\right)\left[1 / d^{2}\right]
$$

Example

If a hexagonal crystal has a ($1 \overline{1} 0$) reflection at $2 \theta=8.5^{\circ}$, at what 2θ angle would you expect to observe the (110) reflection?

Neutron Diffraction

- In neutron diffraction, so-called thermal neutrons are usually used.
- Thermal neutrons have deBroglie wavelengths that are comparable to typical X-ray wavelengths:
$\lambda_{\mathrm{Cu}}=1.5418 \AA$,
$\lambda_{\mathrm{Mo}}=0.71069 \AA$,
$\lambda_{n}=h / p_{n}=h\left[3 m_{n} k_{\mathrm{B}} T\right]^{-1 / 2}=1.45 \AA$
- A major advantage of neutron diffraction is in the very different form factors, which have magnitudes that do not scale with atomic number (good for many light atoms, especially deuterium).
- Neutron spin (magnetic moment) can be exploited to probe magnetic ordering.

Results

- The distances between lattice planes are on the order of lengths of unit cells ($\sim 10 \AA$)
- $50 \AA \geq \mathrm{d}_{h k 1} \geq 0.5 \AA$ for most "small molecule structures"
- Two most common sources:
$\lambda_{C u}=1.540562 \AA\left(\mathrm{~K}_{\alpha 1}\right)$
$\lambda_{\mathrm{Mo}}=0.71073 \AA\left(\mathrm{~K}_{\alpha 1}\right)$

46

Electron Diffraction

- In high-energy electron diffraction, electrons with 100 keV kinetic energies are commonly used
e^{-}'s have short deBroglie wavelengths:
$\lambda_{\mathrm{Cu}}=1.5418 \AA$,
$\lambda_{\text {Mo }}=0.71069 \AA$,
$\lambda_{e, 100 \mathrm{keV}}=h / p=h\left[2 m_{e} E\right]^{-1 / 2}=0.0039 \AA$
- Ewald sphere is very large in comparison with reciprocal lattice spacings. Therefore, a large section of any plane tangent to the Ewald sphere is effectively "on the sphere" at the same time.

Summary

- The geometrical aspects of a crystal (cell dimensions, translational symmetry, etc.) determine the direct lattice.
- The direct lattice, in turn, determines the reciprocal lattice.
- There is a one-to-one correspondence between the RLVs and the vectors through which the incident radiation is diffracted.
- The geometry of the diffraction pattern is determined by the cell dimensions and symmetry - no specific structural details beyond symmetry and dimensions of the unit cell affect the "positions" of diffraction peaks.

How do data determine "Structures" ?

- The positions of diffraction peaks tell us only about the lattice parameters.
- The intensities of the peaks tell us about the nature and positions of the atoms within the unit cell.
- The central problem of crystallography is in working backwards from the peak intensities to locations and identities of atoms in the unit cell.

Easier: How do "Structures" determine data?

Multiple Atom Structures

- Within translationally related sets of atoms, the conditions for constructive interference will be
 satisfied simultaneously. Howeve different sets of atoms will generally diffract the X-ray with different phases.
- Example: For the "crystal" shown here, when the set of A atoms all scatter the X-ray constructively with respect to each other, the se of B atoms will also scatter the X ray constructively. But the the sets $\left\{A_{i}\right\}$ and $\left\{B_{i}\right\}$ will generally scatter with different phases.
- The resultant diffraction intensities will be determined by the sum of the diffraction amplitudes due to $\left\{\mathrm{A}_{i}\right\}$ and $\left\{\mathrm{B}_{i}\right\}$ - including the effect of different phases!

Structure Factors

- With n atoms distributed throughout the unit cell, with fixed positions with respect to each other, scatter X-rays that produce interference patterns.
Amplitude of scattered wave $=$

$$
A \propto S_{\mathbf{K}}=\sum_{j=1}^{n} \underbrace{f_{j}^{\prime}(\mathbf{K})}_{\uparrow} \underbrace{\exp \left\{2 \pi i \mathbf{K} \cdot \mathbf{d}_{j}\right\}}_{\text {geometric factor }}
$$

atomic form factor
(determined by charge
distribution of the $\mathrm{j}^{\text {th }}$ atom)

The Structure Factor expression \& Systematic Absences

- Symmetry operations place restrictions on how atoms in the cell must be distributed. (Physically, perhaps it is the other way around!)

$$
A \propto S_{\mathbf{K}}=\sum_{j=1}^{n} \underbrace{f_{j}^{\prime}(2 \theta)}_{\text {form factor }} \times \underbrace{\exp \left\{2 \pi i \mathbf{K} \cdot \mathbf{d}_{j}\right\}}_{\text {geometric factor }}
$$

- This means that there are symmetry relationships between the list of f_{j} 's and \mathbf{d}_{j} 's.

BCC treated with conventional cell (2 atoms/cell)

$$
\left.\begin{array}{l}
\mathbf{a}=a \hat{\mathbf{x}} \\
\mathbf{b}=a \hat{\mathbf{y}} \\
\mathbf{c}=a \hat{\mathbf{z}}
\end{array}\right\} \Rightarrow \mathbf{a}^{*}=\frac{\hat{\mathbf{x}}}{a} ; \mathbf{b}^{*}=\frac{\hat{\mathbf{y}}}{a} ; \mathbf{c}^{*}=\frac{\hat{\mathbf{z}}}{a}
$$

Atomic Positions:
$\mathbf{d}_{1}=0$
$\mathbf{d}_{2}=\frac{1}{2}(\mathbf{a}+\mathbf{b}+\mathbf{c})$
Form Factors:
$f_{1}^{\prime}(2 \theta)=f_{2}^{\prime}(2 \theta)=f_{\text {Mo }}^{\prime}$

Recall: BCC treated as Primitive

$$
\begin{aligned}
& \mathbf{a}=\frac{a}{2}(\hat{\mathbf{x}}+\hat{\mathbf{y}}-\hat{\mathbf{z}}) \\
& \mathbf{b}=\frac{a}{2}(-\hat{\mathbf{x}}+\hat{\mathbf{y}}+\hat{\mathbf{z}}) \\
& \mathbf{c}=\frac{a}{2}(\hat{\mathbf{x}}-\hat{\mathbf{y}}+\hat{\mathbf{z}})
\end{aligned}
$$

Use to find Recip. Lattice Basis:

$$
\begin{gathered}
\mathbf{a}^{*}=\frac{\mathbf{b} \times \mathbf{c}}{V} ; \quad \mathbf{b}^{*}=\frac{\mathbf{c} \times \mathbf{a}}{V} ; \quad \mathbf{c}^{*}=\frac{\mathbf{a} \times \mathbf{b}}{V} \\
V=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}
\end{gathered}
$$

54

- All recip. Lattice vectors are of the form

$$
\begin{aligned}
& \quad \mathbf{K}_{h k l}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*} \\
& S_{h k l}=f_{\mathrm{Mo}} \times\left[\exp \left\{2 \pi i(h \cdot 0+k \cdot 0+l \cdot 0\}+\exp \left\{2 \pi i\left(\frac{h}{2}+\frac{k}{2}+\frac{l}{2}\right)\right\}\right]\right. \\
& S_{h k l}=f_{\mathrm{Mo}} \times[1+\exp \{\pi i(h+k+l)\}] \\
& \text { If } h+k+l= \\
& \text { even no. : } \exp \{i \pi(h+k+l)\}=1 \Rightarrow S_{h k l}=2 f_{\mathrm{Mo}} \\
& \text { odd no. : } \exp \{i \pi(h+k+l)\}=-1 \Rightarrow S_{h k l}=0
\end{aligned}
$$

\therefore if $h+k+l=$ odd, reflection will not be observed.

Recall: BCC treated as Primitive

If we use the conventional cell (which leaves out half the lattice points, the reciprocal lattice includes the 'open' points too:

$$
\mathbf{a}=a \hat{\mathbf{x}} ; \mathbf{b}=a \hat{\mathbf{y}} ; \mathbf{c}=a \hat{\mathbf{z}} \Rightarrow \mathbf{a}^{*}=\frac{\hat{\mathbf{x}}}{a} ; \mathbf{b}^{*}=\frac{\hat{\mathbf{y}}}{a} ; \mathbf{c}^{*}=\frac{\hat{\mathbf{z}}}{a}
$$

57
$\begin{array}{ccc}\begin{array}{c}\mathbf{K}_{h k l} \cdot(0,0,0) \\ \mathbf{K}_{h k l} \cdot\left(\frac{1}{2}, \frac{1}{2}, 0\right)\end{array} & \mathbf{K}_{h k l} \cdot\left(\frac{1}{2}, 0, \frac{1}{2}\right) & \mathbf{K}_{h k l} \cdot\left(0, \frac{1}{2}, \frac{1}{2}\right) \\ S_{h k l}=f_{\mathrm{Na}} & \left.\downarrow 1+\exp \left\{2 \pi i\left(\frac{h}{2}+\frac{k}{2}\right)\right\}+\exp \left\{2 \pi i\left(\frac{h}{2}+\frac{l}{2}\right)\right\}+\exp \left\{2 \pi i\left(\frac{k}{2}+\frac{l}{2}\right)\right\}\right]\end{array}$

$$
\begin{aligned}
& \left.+f_{\mathrm{Cl}}\left[\begin{array}{c}
\exp \left\{2 \pi i\left(\frac{h}{2}\right)\right\}+\exp \left\{2 \pi i\left(\frac{k}{2}\right)\right\}+\exp \left\{2 \pi i\left(\frac{l}{2}\right)\right\}
\end{array} \begin{array}{c}
\mathrm{Cl} 4 \\
\mathrm{Cl} 1
\end{array} \mathrm{Cl} 2 \mathrm{Cl} 3 \quad+\exp \left\{2 \pi i\left(\frac{h}{2}+\frac{k}{2}+\frac{l}{2}\right)\right\}\right] .\right] \\
& S_{h k l}=f_{\mathrm{Na}}[1+\exp \{\pi i(h+k)\}+\exp \{\pi i(h+l)\}+\exp \{\pi i(k+l)\}] \\
& +f_{\mathrm{Cl}}[\exp \{\pi i(h)\}+\exp \{\pi i(k)\}+\exp \{\pi i(l)\}+\exp \{\pi i(h+k+l)\}] \\
& =f_{\mathrm{Na}}\left[1+(-1)^{h+k}+(-1)^{h+l}+(-1)^{k+l}\right]+f_{\mathrm{Cl}}\left[(-1)^{h}+(-1)^{k}+(-1)^{l}+(-1)^{h+k+l}{ }^{-}\right. \text {. } \\
& \begin{array}{l}
S_{h k l}=f_{\mathrm{Na}}[1+\exp \{\pi i(h+k)\}+\exp \{\pi i(h+l)\}+\exp \{\pi i(k+l)\}] \\
+f_{\mathrm{Cl}}[\exp \{\pi i(h)\}+\exp \{\pi i(k)\}+\exp \{\pi i(l)\}+\exp \{\pi i(h+k+l)\}] \\
{\left[1+(-1)^{h+k}+(-1)^{h+l}+(-1)^{k+l}\right]+f_{\mathrm{Cl}}\left[(-1)^{h}+(-1)^{k}+(-1)^{l}+(-1)^{h+k+l} .\right.}
\end{array}
\end{aligned}
$$

Example: NaCl

$\mathrm{Na}: \begin{cases}\mathbf{d}_{\mathrm{Na} 1}=0 & \\ \mathbf{d}_{\mathrm{N} 22}=\frac{1}{2}(\mathbf{a}+\mathbf{b}) & \left(\frac{1}{2}, \frac{1}{2}, 0\right) \\ \mathbf{d}_{\mathrm{Na} 3}=\frac{1}{2}(\mathbf{a}+\mathbf{c}) & \left(\frac{1}{2}, 0, \frac{1}{2}\right) \\ \mathbf{d}_{\mathrm{Na} 4}=\frac{1}{2}(\mathbf{b}+\mathbf{c}) & \left(0, \frac{1}{2}, \frac{1}{2}\right)\end{cases}$
$\mathrm{Cl}: \begin{cases}\mathrm{Cl} 1 & \left(\frac{1}{2}, 0,0\right) \\ \mathrm{Cl} 2 & \left(0, \frac{1}{2}, 0\right) \\ \mathrm{Cl} 3 & \left(0,0, \frac{1}{2}\right) \\ \mathrm{Cl} 4 & \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)\end{cases}$

58

Systematic extinctions

 due to face centering
Other systematic absences

- Example: Systematic absences expected for a crystal with a 4_{1} screw axis.

4_{1} screw axis along c

$x, y, z \xrightarrow{4_{1}} \bar{y}, x, z+1 / 4 \xrightarrow{4_{1}} \bar{x}, \bar{y}, z+1 / 2 \xrightarrow{4_{1}} y, \bar{x}, z+3 / 4$
(Every atom belongs to set of 4 symmetry-related atoms.)

$$
S_{h k l} \propto \sum_{p} f_{p}\left\{\begin{array}{l}
\exp \{2 \pi i(h x+k y+l z)\} \\
+\exp \{2 \pi i(-h y+k x+l z)\} \cdot e^{(\pi i / 2) l} \\
+\exp \{2 \pi i(-h x-k y+l z)\} \cdot e^{(\pi i) l} \\
+\exp \{2 \pi i(h y-k x+l z)\} \cdot e^{(3 \pi i / 2) l}
\end{array}\right\}
$$

(p refers to summation over the sets of symmetry-related atoms.)

61

Other systematic absences

- Example: crystal with an a-glide \perp to a 4_{1} axis. (41 screw axis along c, \therefore a glide \| to the ab-plane)

$$
\begin{aligned}
& x, y, z \xrightarrow{a-\text { glide }} x+1 / 2, y, \bar{z} \xrightarrow{a-g l i d e} x+1, y, z \\
& S_{h k l} \propto \sum_{p} f_{p}\left\{\begin{array}{l}
\exp \{2 \pi i(h x+k y+l z)\} \\
+\exp \{2 \pi i(h(x+1 / 2)+k y-l z)\}
\end{array}\right\}
\end{aligned}
$$

This will be zero when the term in brackets is zero:

$$
\begin{gathered}
\exp \{2 \pi i(h x+k y+l z)\}=-\exp \{2 \pi i(h(x+1 / 2)+k y-l z)\} \\
\exp \{2 \pi i(l z)\}=-\exp \{2 \pi i(h / 2-l z)\}=-e^{\pi i h} \exp \{2 \pi i(-l z)\} \\
\exp \{2 \pi i l z\}=-(-1)^{h} \exp \{-2 \pi i l z\}
\end{gathered}
$$

If $l=0$,then absences occur where $h=$ odd.
For b-glide \perp to \mathbf{c}-axis, find absences where $k=$ odd $(l=0)$.

Consider $h=k=0$
\ldots and $l=$ odd

$$
S_{h k l} \propto\left(\sum_{p} f_{p}\right)\{\exp (2 \pi i l z)\} \cdot\left[1+e^{\pi i / 2}+e^{\pi i}+e^{3 \pi i / 2}\right]=0
$$

\ldots and $l=2,6,10 \ldots$

$$
S_{h k l} \propto\left(\sum_{p} f_{p}\right)\{\exp (2 \pi i l z)\} \cdot\left[\begin{array}{c}
\left.1+e^{\pi i}+1+e^{\pi i}\right]
\end{array}=0\right.
$$

\ldots and $l=4,8,12 \ldots$
$S_{h k l} \propto \sim[1+1+1+1]$
(non zero)
For $h=k=0$, only reflections with $l=4,8,12 \ldots$ will be observed.

62

Symmetry of the Diffraction Pattern; Equivalent Reflections - Laue Symmetry

The pattern of single crystal diffraction "spots" is often referred to as the intensity-weighted reciprocal space. Including the intensities, what symmetries should the intensity-weighted reciprocal space exhibit?

- In the absence of absorption and/or "anomalous scattering", reflections related to each other by inversion in reciprocal space, (h, k, l) and $(-h,-k,-l)$, should be of equal intensity. This is called Friedel's Law and it applies even for noncentrosymmetric space groups (no inversion center).
The Patterson symmetry adds an inversion center if the space group is acentric. Therefore, in centrosymmetric cases, the Patterson symmetry is the same as the symmetry of the diffraction pattern.

Symmetry of the Diffraction Pattern; Equivalent Reflections - Laue Symmetry
Translation of a crystal leaves reciprocal space unaffected. Therefore, the translational parts of symmetry operations can be ignored in finding reflections that are expected to be equivalent.

- Screw operations have same symmetry effect as simple rotational point group operations
- Glide operations have the same symmetry effect as simple mirror planes

See: Table 11.4, p. 382 in Cotton.

$$
\mathrm{TI}_{(1+x)} \mathrm{BaSrCa}_{(1-x)} \mathrm{Cu}_{2} \mathrm{O}_{(7-\delta)} \text { Superconductor }
$$

- Simulated electron diffraction
- 001 plane.
- The reciprocal lattice intensities reflect each symmetry operation
- No systematic absences
$\mathrm{Tl}_{(1+x)} \mathrm{BaSrCa}_{(1-x)} \mathrm{Cu}_{2} \mathrm{O}_{(7-\delta)}$ Superconductor

- Within the disorder model ($x=0.22$), the space group is symmorphic: P4/mmm.
- The reciprocal lattice intensities reflect each symmetry operation
- No systematic absences

$$
a=3.8234 \AA ; c=12.384 \AA
$$

66
$\mathrm{TI}_{(1+x)} \mathrm{BaSrCa}_{(1-x)} \mathrm{Cu}_{2} \mathrm{O}_{(7-8)}$ Superconductor

- Simulated electron diffraction pattern
- 100 plane.
- The reciprocal lattice intensities reflect each symmetry operation
- No systematic absences

$\mathrm{Tl}_{(1+x)} \mathrm{BaSrCa}_{(1-x)} \mathrm{Cu}_{2} \mathrm{O}_{(7-\delta)}$	Superconductor
	- Simulated electron diffraction pattern - 110 plane. - The reciprocal lattice intensities reflect each symmetry operation - No systematic absences

69

Leucite (298K), $l=0$ plane

- Simulated electron diffraction pattern
- What symmetries are possible?

Leucite (298K), $l=0$ plane

- Adjacent spots have a separation of $0.153 \AA^{-1}$.
- $1 /\left(0.153 \AA^{-1}\right)=6.536 \AA$. What does this number mean?

Leucite (298K), $l=0$ plane

- Intense peaks are indexed. (How was this done?)

74
$\mathrm{NaCl}: h=0$ and $h=k$ planes

- The circles correspond to reflections on the same "cone", i.e., with the same 2θ values.

Laue Equations

- These are relations connecting observed 2θ values and indices:

$$
\text { Recall: } \quad \mathbf{a}^{*} \cdot \mathbf{a}=\mathbf{b}^{*} \cdot \mathbf{b}=\mathbf{c}^{*} \cdot \mathbf{c}=1
$$

$$
\mathbf{a}^{*} \cdot \mathbf{b}=\mathbf{a}^{*} \cdot \mathbf{c}=\mathbf{b}^{*} \cdot \mathbf{a}=\mathbf{b}^{*} \cdot \mathbf{c}=\mathbf{c}^{*} \cdot \mathbf{a}=\mathbf{c}^{*} \cdot \mathbf{b}=0
$$ earlier we found

$$
\left|\mathbf{K}_{h k l}\right|=\frac{2}{\lambda} \sin \theta \quad \mathbf{K}_{h k l} \cdot \mathbf{K}_{h k l}=\frac{4}{\lambda^{2}} \sin ^{2} \theta
$$

or

$$
\sin ^{2} \theta=\frac{\lambda^{2}}{4} K_{h k l}^{2}=\left(\frac{\lambda}{2 d_{h k l}}\right)^{2}
$$

- Cubic and Tetragonal - special cases of orthorhombic:

$$
\begin{aligned}
& \sin ^{2} \theta=\left(\frac{\lambda}{2 a}\right)^{2}\left(h^{2}+k^{2}+l^{2}\right) \text { cubic } \\
& \sin ^{2} \theta=\lambda^{2}\left(\frac{h^{2}+k^{2}}{4 a^{2}}+\frac{l^{2}}{4 c^{2}}\right) \text { tetragonal }
\end{aligned}
$$

- Hexagonal
c out of plane of paper
$\alpha=\beta=90^{\circ} \gamma=120^{\circ}$

$$
\begin{aligned}
& \mathbf{a}=a\left(\frac{\sqrt{3}}{2} \hat{\mathbf{x}}-\frac{1}{2} \hat{\mathbf{y}}\right) \\
& \mathbf{b}=a \hat{\mathbf{y}} \\
& \mathbf{c}=c \hat{\mathbf{z}} \\
& V=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\frac{\sqrt{3}}{2} a^{2} c
\end{aligned}
$$

- Any RLV is written as $\quad \mathbf{K}_{h k l}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}$

$$
\begin{aligned}
& \mathbf{K}_{h k l} \cdot \mathbf{K}_{h k l}=h^{2} \mathbf{a}^{*} \cdot \mathbf{a}^{*}+k^{2} \mathbf{b}^{*} \cdot \mathbf{b}^{*}+l^{2} \mathbf{c}^{*} \cdot \mathbf{c}^{*} \\
&+2 h k \mathbf{a}^{*} \cdot \mathbf{b}^{*}+2 h l \mathbf{a}^{*} \cdot \mathbf{c}^{*}+2 k l \mathbf{b}^{*} \cdot \mathbf{c}^{*}=\frac{4}{\lambda^{2}} \sin ^{2} \theta
\end{aligned}
$$

- Special cases:

Orthorhombic

$$
\mathbf{a}^{*}=\frac{1}{a} \hat{\mathbf{x}} \quad ; \quad \mathbf{b}^{*}=\frac{1}{b} \hat{\mathbf{y}} \quad ; \quad \mathbf{c}^{*}=\frac{1}{c} \hat{\mathbf{z}}
$$

$$
K^{2}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}} \Rightarrow \sin ^{2} \theta=\left(\frac{\lambda}{2}\right)^{2}\left(\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}\right)
$$

78

- Reciprocal lattice

$$
\begin{gathered}
\mathbf{a}^{*}=\frac{\mathbf{b} \times \mathbf{c}}{V}=\frac{a c \hat{\mathbf{x}}}{(\sqrt{3} / 2) a^{2} c}=\frac{2}{\sqrt{3} a} \hat{\mathbf{x}} \\
\mathbf{b}^{*}=\frac{1}{a}\left(\frac{\hat{\mathbf{x}}}{\sqrt{3}}+\hat{\mathbf{y}}\right) ; \quad \mathbf{c}^{*}=\frac{1}{c} \hat{\mathbf{z}}
\end{gathered}
$$

- Laue equation

$$
\begin{gathered}
\sin ^{2} \theta=\frac{\lambda^{2}}{4} \mathbf{K} \cdot \mathbf{K}=\frac{\lambda^{2}}{4}\left[h^{2}\left|\mathbf{a}^{*}\right|^{2}+k^{2}\left|\mathbf{b}^{*}\right|^{2}+l^{2}\left|\mathbf{c}^{*}\right|^{2}+2 h k \mathbf{a}^{*} \cdot \mathbf{b}^{*}\right] \\
\sin ^{2} \theta=\frac{\lambda^{2}}{3 a^{2}}\left(h^{2}+k^{2}+h k\right)+\frac{\lambda^{2}}{4 c^{2}} l^{2}
\end{gathered}
$$

