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References for this Topic

✿Clegg, “Crystal Structure Determination”. 
✿ Stout & Jensen, “X-Ray Structure Determination”, 2nd 

Edition.  Instrumentation discussion is completely 
outdated, but still a good text on the subject. 

✿ A more authoritative general reference: Giacovazzo, et 
al., “Fundamentals of Crystallography”, IUCr Texts on 
Crystallography. 

✿ MIT has a good site (MIT Open Courseware): http://
ocw.mit.edu/OcwWeb/Chemistry/
5-841Fall-2006/LectureNotes/index.htm
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Bravais Lattices
• Direct Lattice: 

– A regular, periodic array of points with a 
spacing commensurate with the unit cell 
dimensions. The environment around each 
points in a lattice is identical. 

• The set of direct lattice points can be written as 
(vectors): R = ta + ub + vc    t ,u ,v  integers 

•  V = volume of unit cell

V = a ⋅ b× c( ) =
b ⋅ c × a( ) = c ⋅ a × b( )
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Reciprocal Lattices
• Reciprocal Lattice: the basis vectors of the reciprocal 

lattice are defined as 

  

• The set of Reciprocal Lattice Vectors (RLVs) are 
written as

a*= b× c
V

; b*= c × a
V

; c*= a × b
V

;     V = a × b( )• c

   

K i = ha* + kb* + lc*

h,k,l  = integers

e.g.,  a* = 2π b× c
V

; ! )

(Note: In physics texts, a factor of 2π is usually included
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Reciprocal Lattices
• Properties of RLVs:  

a  i  a* = b i  b* = c i  c* = 1
a* i  b = a* i  c = b* i  a = b* i  c = c* i  b = c* i  a = 0
Alternatively, these can be regarded as definitions.

In 2 dimensions, we define the RLVs

a* ⊥ b , b* ⊥ a  , a  i  a* = b i  b* = 1
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Side by Side (2-D)

• Although they “live in separate universes”, the direct and 
reciprocal lattices are in rotational “lock-step”.

a

b

DirectLattice

a∗

b∗

Reciprocal Lattice

a

b

a∗
b∗
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Lattice & Reciprocal Lattice 
Example: BCC treated as Primitive

a = a
2
x̂ + ŷ − ẑ( )

b = a
2

−x̂ + ŷ + ẑ( )
c = a
2
x̂ − ŷ + ẑ( )

ax̂

aŷ

aẑ

(a/2)(x + y – z)^ ^ ^

(a/2)(x – y + z)^ ^ ^

(a/2)(–x + y + z)^ ^ ^

a

bc

a*= b× c
V
; b*= c × a

V
; c*= a × b

V
V = a × b( )• c

Use to find Recip. Lattice Basis:

a
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Lattice & Reciprocal Lattice 
Example: BCC treated as Primitive

a*= 1
a
x̂ + ŷ( )

b*= 1
a
ŷ + ẑ( )

c*= 1
a
x̂ + ẑ( )

Exercise: Find the reciprocal  
lattice of the reciprocal lattice!

(1/a)ŷ

(1/a)(x + y)^^

(1/a)(x + z)^ ^

(1/a)(y + z)^ ^

c*

a*

b*

(1/a)x̂

(1/a)ẑ

1/a

If we use the conventional cell (which leaves out half the lattice 
points, the reciprocal lattice includes the ‘open’ points too:

a = ax̂  ;  b = aŷ ;  c = aẑ   ⇒     a*= x̂
a

 ;  b*= ŷ
a

 ;  c*= ẑ
a
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Interrelationships
• The direct lattice can be partitioned such that all 

of the lattice points lie on sets of planes. 
Crystallographers classify these sets of planes 
using the intercepts on the unit cell axes cut by 
the plane adjacent to the plane through the 
origin. 

• The intercepts are of the form (1/h, 0, 0), (0,1/k, 
0), and (0,0,1/l). 

• These planes are normal to the RLVs

K hkl = ha
* + kb* + lc*
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Interrelationships

2a* +3b*
a*

b*

intercept: (1/2,0)
intercept: (0,1/3)

-3a+2b

note: (-3a+2b)•(2a* +3b*)=0

a

b
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Interrelationships

DirectLattice

a

b

Reciprocal Lattice

2a* +b*

intercept: (1/2,0)
intercept: (0,1)
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Interrelationships

a

b

ˆ ˆdhkl =(1/h)a•Khkl = (1/h)a K cosθa

ˆ

- aunitvectorθb

latticeplanes

Khkl

Khkl
Khkl

Khkl =

ˆ ˆdhkl =(1/k)b•Khkl = (1/k)b K cosθb

(0,1/k,0)

(1/h,0,0)

θa

(hkl) plane

c

(1/h,0,0)

-(1/h)a +(1/l)c

-(1/h)a +(1/k)ba

b

(0,0,1/l)
(0,1/k, 0)
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Kj•Ri products involve no cross terms 
and always yield integers

• For any DLV Ri and any RLV Kj

R i iK j = ta + ub+ vc( ) ⋅ ha* + kb* + lc*( )
= th+ uk + vl = m,        an integer

⇒ e2π iRiiK j =1,  for all Ri  and all K j
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hkl Planes are normal to Khkl

 − 1
h
a + 1
k
b and  − 1

h
a + 1
l
c .

K hkl ⋅ − 1
h
a + 1
k
b

⎛
⎝⎜

⎞
⎠⎟
= − h

h
a ⋅a* + k

k
b ⋅b* = −1+1= 0

K hkl ⋅ − 1
h
a + 1
l
c

⎛
⎝⎜

⎞
⎠⎟
= − h

h
a ⋅a* + k

k
c ⋅c* = −1+1= 0

∴K hkl ⊥  to both vectors

∴K hkl ⊥  to the family of planes

• Proof: Consider the plane that cuts the cell axes at (1/h,0,0), 
(0,1/k,0) and (0,0,1/l). 

• Two vectors lie in the plane:

(hkl) plane

c

(1/h,0,0)

-(1/h)a +(1/l)c

-(1/h)a +(1/k)ba

b

(0,0,1/l)
(0,1/k, 0)
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• Assume Khkl is the shortest RLV that points in the exact direction 
it points (i.e., h,k, and l have no common factor.) 

• Khkl is normal to the “hkl family of planes”. We can relate the 
distance between planes to the magnitude of Khkl:

dhkl =
1
h
a ⋅K̂ hkl =

a K̂hkl
h

cosθa =
a
h

cosθa

Where K̂ hkl  is a unit vector parallel to K hkl .

now, K̂ hkl =
K hkl

Khkl
= ha

* + kb* + lc*

Khkl
 

so dhkl =
1
hKhkl

a ⋅ ha* + kb* + lc*( )
∴dhkl =

1
Khkl

a

b

ˆ ˆdhkl =(1/h)a•Khkl = (1/h)a K cosθa

ˆ

- aunitvectorθb

latticeplanes

Khkl

Khkl
Khkl

Khkl =

ˆ ˆdhkl =(1/k)b•Khkl = (1/k)b K cosθb

(0,1/k,0)

(1/h,0,0)

θa

   
dhkl =

1
K hkl

=
1

Khkl
To Prove:
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Diffraction

k =
1
λ

• In handling scattering of x-rays (or electrons) by matter, we need 
to characterize the x-ray beam by specifying its wavelength and 
direction of propagation: 

• Note: The usual physics definition is

E = E0x̂
H = H0ŷ

k = kẑ
Ê0 × Ĥ0 = k̂

H = H0 exp 2π i(k ⋅r −νt){ }
ReH = H0 cos 2π (k ⋅r −νt){ }
E = E0 exp 2π i(k ⋅r −νt){ }
ReE = E0 cos 2π (k ⋅r −νt){ }

k = 2π
λ
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Additional Comments
• In order to speak of the localization of an electron (or photon), 

we must ‘blur’ the specification of the electron’s (photon’s) 
wavelength, and allow that there is some uncertainty in the 
wavelength (and frequency and energy): 

 where we have assumed, for simplicity, that the wave is 
propagating along the z-axis and E0(k) is a function strongly 
peaked near a particular ‘approximate’ wavenumber k. 

• Electrons and photons are different in that wave packets for 
electrons spread out over time, while photon wave packets 
retain their width as they propagate.  For more details, see:

Ek (z,t) = E0( ′k )exp 2π i( ′k z −νt){ }d ′k
−∞

∞

∫

http://farside.ph.utexas.edu/teaching/qmech/lectures/node1.html
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Traveling wave packet
• By “adding” up a narrow range of frequencies, 

a “wave packet” can be constructed and a 
photon visualized.

http://farside.ph.utexas.edu/teaching/qmech/lectures/node1.html
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Elastic Scattering

• When an x-ray is scattered by an atom it may emerge 
in any direction, but unless absorption occurs, it has 
the same wavelength: 

• X-ray diffraction for structure determination is 
concerned with interference effects that result from 
scattering by periodic arrays of atoms.

k = ′k = 1
λ

19

Interference - “Time Lapse” pictures

This is my own heuristic 
exercise, not “reality”.
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Atomic Form 
Factors: f(2θ)

• The “water ripples” concept is 
not actually accurate; forward 
scattering is actually more 
intense.

water ripples

Atomic X-ray 
scattering

21

Atomic Form Factors: f (2θ)

 

Atomic X-ray 
scattering

• Forward scattering is more intense in “real 
atoms” with diffuse electron clouds. If all the 
electron density were concentrated very close to 
the nucleus, 2θ dependence would disappear. 

• f (2θ = 0) = N    (number of electrons) 

Clegg, p. 24.
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“Thermal” effects: f ′(2θ)

Again, scattering at higher angles 
is attenuated by spreading out the 

electron density

• Vibrational motion “spreads out” average electron 
density and causes effective scattering at higher 
angles to fall off more rapidly;  U is the isotropic 
displacement parameter (units of Å2 ).

f j′(2θ ) = f j (2θ ) • exp
−8π 2U sin2θ

λ2
⎛

⎝⎜
⎞

⎠⎟

0.2 0.4 0.6 0.8

5

10

15

20

Cl–

sinθ/λ (Å–1)

  
f j
′ (2θ)

  
f j (2θ)

Clegg, p. 24.
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Interference between scatterers
Consider the interference between two scatterers, separated by a 

vector d:

k̂ = k
k

ˆ ′k = ′k
′k

k = ′k = 1
λ

  or  k̂ = λk

k

′ k 

k

1 2

3 4

d d

d
d
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Interference between scatterers
Consider the interference between two scatterers, separated by a 

vector d:

k̂ = k
k

ˆ ′k = ′k
′k

k = ′k = 1
λ

  or  k̂ = λk
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Interference between 
scatterers

• Amplitude of scattered wave  

• The phase shift factor depends on the 
path length difference = 

• For completely constructive 
interference, where n is some integer: 

• For completely destructive interference

∝ f1(2θ )+ f2(2θ ) ⋅( phase shift factor)

k̂ ⋅d+ (− ˆ ′k ) ⋅d = (k̂ − ˆ ′k ) ⋅d

(k̂ − ˆ ′k ) ⋅d = nλ    or   (k − ′k ) id = n

(k − ′k ) id = n+ 1
2Clegg, Sec. 1-6.
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• For the general case the amplitude of the 
scattered wave: 

• In general we use a complex form:

A∝ f1(2θ )+ f2(2θ )cos 2π (k − ′k ) •d⎡⎣ ⎤⎦
cos 2π (k − ′k ) •d⎡⎣ ⎤⎦ = 1  when  (k − ′k ) •d = n

cos 2π (k − ′k ) •d⎡⎣ ⎤⎦ = −1  when  (k − ′k ) •d = n+ 1
2

A∝ f1(2θ )+ f2(2θ )exp 2π i(k − ′k ) •d{ }
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• In a crystal, all pairs of translationally equivalent 
atoms are separated by some direct Lattice 
Vector (Ri). 

∴ If all atoms in the crystal that are related by 
translational symmetry are to scatter X-rays to 
give constructive interference simultaneously, 
we must have the following: 

   Ri •(k – k′) = n  or  e2πi(k – k′)•R = 1 

    where Ri is any DLV.
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The beam is diffracted by a RLV!

 This places conditions on the possible 
vectors k – k′  that are exactly the 
same as the conditions used to define 
RLVs. We therefore obtain the Laue 
condition for diffraction: 

   k – k′ = Kj where Kj is some RLV k

k
K hkl

k´
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Bragg View

Clegg, Secs. 1.4-1.5.
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Bragg 
View
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Optical Transforms; Fraunhofer 
Diffraction

• The diffraction phenomenon can 
demonstrated with monochromatic visible 
light by use of optical transforms. 

• The phenomenon relies on interference 
effects, like X-ray diffraction, though the 
scattering mechanism is different. 

• The interference phenomenon occurs when 
the spacing between scatterers is on the 
same order of magnitude as the wavelength 
of the light used.
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Ewald Construction
• Start with reciprocal lattice 

and the incident wavevector, 
k, originating at (h,k,l) = 
(0,0,0). 

• Draw a sphere with the tip of 
k at the center that contains 
the origin, (0,0,0), on the 
sphere’s surface. 

• As the direction of k is 
changed, other RLVs (Kj’s) 
move through the surface – 
which is the condition that a 
diffraction peak is observed. 

k

(0,0,0)

k

Khkl =k – k′
Khkl

′k
(0,0,0)

k

(0,0,0)

Stout & Jensen, Sec. 2.4.
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Ewald Construction

c
a

k

′k

k

′k ′k

k

(h,0,0)

(0,0,l)

k

′k

kk

′k

k

′k

k
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Limitations on the Data
• Reflections (Kj’s) lie on the 

Ewald sphere to meet the the 
diffraction condition. 

•  As the relative orientation of 
the crystal and the incident X-
ray beam are varied, the 
direction (but not the length) 
of k changes, and k can in 
principal point any direction. 

• Therefore, the “full sphere” of 
possible reflections has radius 
2|k| = 2k = 2/λ.  The spacings 
between the RLVs (RL points) 
∝ 1/a (or 1/b or 1/c). 

k1(0,0,0)

k2
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Getting more Data - 
shorter λ

• Reflections (Kj’s) are limited to 
those RLVs no further from the 
origin than 2|k| = 2k = 2/λ. 

• The spacings between the RLVs 
(∝ 1/a or 1/b or 1/c) are 
determined by the unit cell 
dimensions. 

• For example, if the X-ray 
wavelength is shortened, more 
reflections fall “in the 
sphere” (e.g., λCu = 1.54056 
(Kα1), λMo = 0.71073 (Kα1). 

kCu

(0,0,0)

kMo

Stout & Jensen, Sec. 2.4.
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k − ′k =K j   ⇒   − ′k =K j − k

⇒   ′k i  ′k = (K j − k) i  (K j − k)

k 2 =K j
2 − 2k iK j + ′k 2

∴2k iK j =K j
2

2k K j cos(π 2−θ )
sin(θ )

! "## $## = K j

2
   ⇒    2k sinθ = K j    ⇒    

2
λ

sinθ = K j

 ⇒   
2

K j

sinθ = λ   ⇒  
2

nK hkl

sinθ = λ    ⇒    2dhkl sinθ = nλ   Bragg's Law

In the last line we've used the fact that K j  is a multiple of K hkl , which is the 

shortest RLV for which h, k, and l  have no common factors. 
i.e., K j = nK hkl , where n = integer.

Use to get  
Laue equations
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Laue Equations

   

nλ = 2dhkl sinθ; 

Khkl
2 = (4 λ2 )sin2θ    where   K hkl = ha* + kb* + lc*   (***)

or  [1 d 2] = (4 λ2 )sin2θ ,  since  Khkl
2 = [1 d 2]

The “Laue Equations” for each crystal class can be derived from the form (***).

Cubic 

  sin2θ = A(h2 + k 2 + l2 );  A = λ2 4a2    or   [1 d2 ] = (h2 + k 2 + l2 ) a2  
 
Tetragonal 

  

sin2θ = A(h2 + k 2 ) + Cl2;  A = λ2 4a2 ;  C = λ2 4c2

or   [1 d2] = (h2 + k 2 ) a2 + l2 c2
 

 
Hexagonal 

  

sin2θ = A(h2 + hk + k2 ) + Cl2;  A = λ2 3a2 ;  C = λ2 4c2

or   [1 d2] = 4(h2 + k2 ) 3a2 + l2 c2
 

Orthorhombic 

  

sin2θ = Ah2 + Bk 2 + Cl2;  A = λ2 4a2 ;  B = λ2 4b2 ; C = λ2 4c2

or   [1 d2] = h2 a2 + k 2 b2 + l2 c2
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Laue Equations, cont.

   

Khkl
2 = (4 λ2 )sin2θ    

where   K hkl = ha* + kb* + lc*   (***)

Monoclinic 

  

sin2θ = Ah2 + Bk 2 + Cl2 − Dhl
A = λ2 (4a2 sin2 β);   B = λ2 4b2 ;

C = λ2 (4c2 sin2 β);   D = (λ2 cosβ) (2acsin2 β)

or   [1 d2] = h2 (a2 sin2 β) + k2 b2 + l2 (c2 sin2 β) − 2hlcosβ (acsin2 β)

  

 
Triclinic 
    sin2θ = (λ2 4)[1 d 2] 

  

1
d2

=

h
a

h
a

cosγ cosβ

k
b

1 cosα

l
c

cosα 1

+ k
b

1
h
a

cosβ

cosγ k
b

cosα

cosβ l
c

1

+ k
b

1 1
h
a

cosα 1
k
b

cosβ cosα l
c

1 cosα cosβ
cosα 1 cosα
cosβ cosα 1
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Example
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If a hexagonal crystal has a (110) reflection
at 2θ = 8.5˚, at what 2θ  angle would you 
expect to observe the (110) reflection?
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Results
• The distances between lattice planes are on 

the order of lengths of unit cells (~10 Å) 
• 50 Å ≥ dhkl ≥ 0.5 Å for most “small molecule 

structures” 
• Two most common sources: 
 λCu = 1.540562 Å (Kα1) 
 λMo = 0.71073 Å (Kα1)
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Neutron Diffraction
• In neutron diffraction, so-called thermal neutrons are 

usually used. 
• Thermal neutrons have deBroglie wavelengths that are 

comparable to typical X-ray wavelengths: 
λCu = 1.5418 Å,  
λMo = 0.71069 Å,  
λn = h/pn = h[3mnkBT]-1/2 = 1.45 Å 

• A major advantage of neutron diffraction is in the very 
different form factors, which have magnitudes that do 
not scale with atomic number (good for many light 
atoms, especially deuterium). 

• Neutron spin (magnetic moment) can be exploited to 
probe magnetic ordering. 
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Electron Diffraction
• In high-energy electron 

diffraction, electrons with 100 
keV kinetic energies are 
commonly used 

• e–’s have short deBroglie 
wavelengths: 
λCu = 1.5418 Å,  
λMo = 0.71069 Å,  
λe,100keV = h/p = h[2meE]-1/2 = 0.0039 Å 

• Ewald sphere is very large in 
comparison with reciprocal 
lattice spacings.  Therefore, a 
large section of any plane tangent 
to the Ewald sphere is effectively 
“on the sphere” at the same time.
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Summary
• The geometrical aspects of a crystal (cell 

dimensions, translational symmetry, etc.) 
determine the direct lattice. 

• The direct lattice, in turn, determines the 
reciprocal lattice. 

• There is a one-to-one correspondence 
between the RLVs and the vectors through 
which the incident radiation is diffracted. 

• The geometry of the diffraction pattern is 
determined by the cell dimensions and 
symmetry - no specific structural details 
beyond symmetry and dimensions of the unit 
cell affect the “positions” of diffraction peaks.
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Multiple Atom Structures

d

A

B

d

A

B

d

A

B

d

A

B

d

A

B

d

A

B

A

d

A

B

d

A

B

A A A

B BB

 

• Within translationally related sets of 
atoms, the conditions for 
constructive interference will be 
satisfied simultaneously.  However, 
different sets of atoms will generally 
diffract the X-ray with different 
phases. 

• Example: For the “crystal” shown 
here, when the set of A atoms all 
scatter the X-ray constructively 
with respect to each other, the set 
of B atoms will also scatter the X-
ray constructively.  But the the sets 
{Ai} and {Bi} will generally scatter 
with different phases. 

• The resultant diffraction intensities 
will be determined by the sum of 
the diffraction amplitudes due to 
{Ai} and {Bi} - including the effect of 
different phases!
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How do data determine “Structures” ?
• The positions of diffraction peaks tell us only 

about the lattice parameters. 
• The intensities of the peaks tell us about the 

nature and positions of the atoms within the 
unit cell. 

• The central problem of crystallography is in 
working backwards from the peak intensities 
to locations and identities of atoms in the unit 
cell.

Easier: How do “Structures” determine data?
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Structure Factors
• With n atoms distributed throughout the unit cell, 

with fixed positions with respect to each other, 
scatter X-rays that produce interference patterns. 

 Amplitude of scattered wave =

A∝ SK = f j′(K)!"#
exp 2π iK id j{ }
geometric factor
! "## $##j=1

n

∑

atomic form factor 
(determined by charge 
distribution of the jth atom)
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The Structure Factor expression 
& Systematic Absences

• Symmetry operations place restrictions on 
how atoms in the cell must be distributed. 
(Physically, perhaps it is the other way 
around!) 

• This means that there are symmetry 
relationships between the list of fj’s and dj’s.

A∝ SK = f j′(2θ )

form factor
!"# $#

×  exp 2π iK id j{ }
geometric factor
! "## $##j=1

n

∑

53

Recall: BCC treated as Primitive

a = a
2
x̂ + ŷ − ẑ( )

b = a
2

−x̂ + ŷ + ẑ( )
c = a
2
x̂ − ŷ + ẑ( )

ax̂

aŷ

aẑ

(a/2)(x + y – z)^ ^ ^

(a/2)(x – y + z)^ ^ ^

(a/2)(–x + y + z)^ ^ ^

a

bc

a*= b× c
V
; b*= c × a

V
; c*= a × b

V
V = a × b( )• c

Use to find Recip. Lattice Basis:

a
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BCC treated with conventional cell (2 atoms/cell)

a

  
a = ax̂
b = aŷ
c = aẑ

⎫

⎬
⎪

⎭
⎪

 ⇒    a*= x̂
a

 ;  b*= ŷ
a

 ;  c*= ẑ
a

Atomic Positions:
d1 = 0
d2 =

1
2 (a + b+ c)

Form Factors:
f1′(2θ ) = f2′(2θ ) = ′fMo

ax̂

aŷ

aẑ

(a/2)(x + y – z)^ ^ ^

(a/2)(x – y + z)^ ^ ^

(a/2)(–x + y + z)^ ^ ^

a

bc

(a/2)(x + y + z)^ ^ ^
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• All recip. Lattice vectors are of the form

K hkl = ha
∗ + kb∗ + lc∗

Shkl = fMo × exp 2π i(h i0+ k i0+ l i0{ }+ exp 2π i h
2
+ k
2
+ l
2

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Shkl = fMo × 1+ exp π i h+ k + l( ){ }⎡⎣ ⎤⎦

exp iπ (h+ k + l){ } = 1 ⇒ Shkl = 2 fMo
exp iπ (h+ k + l){ } = −1 ⇒ Shkl = 0

If  h+ k + l =
even no. :
odd no. :

∴  if  h+ k + l =  odd, reflection will not be observed.
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Recall: BCC treated as Primitive

a*= 1
a
x̂ + ŷ( )

b*= 1
a
ŷ + ẑ( )

c*= 1
a
x̂ + ẑ( ) (1/a)ŷ

(1/a)(x + y)^^

(1/a)(x + z)^ ^

(1/a)(y + z)^ ^

c*

a*

b*

(1/a)x̂

(1/a)ẑ

1/a

If we use the conventional cell (which leaves out half the lattice 
points, the reciprocal lattice includes the ‘open’ points too:

a = ax̂  ;  b = aŷ ;  c = aẑ   ⇒     a*= x̂
a

 ;  b*= ŷ
a

 ;  c*= ẑ
a

57

Example: NaCl
Na: 

dNa1 = 0
dNa2 =

1
2 (a + b) 1

2 , 1
2 ,0( )

dNa3 =
1
2 (a + c) 1

2 ,0, 1
2( )

dNa4 =
1
2 (b+ c) 0, 1

2 , 1
2( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Cl: 

Cl1 1
2 ,0,0( )

Cl2 0, 1
2 ,0( )

Cl3 0,0, 1
2( )

Cl4 1
2 , 1

2 , 1
2( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪
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K hkl • 0,0,0( )         K hkl • 1
2 , 1

2 ,0( )             K hkl • 1
2 ,0, 1

2( )           K hkl • 0, 1
2 , 1

2( )

Shkl = fNa 1+ exp 2π i h
2
+ k

2
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭
+ exp 2π i h

2
+ l

2
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭
+ exp 2π i k

2
+ l

2
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

      + fCl

exp 2π i h
2

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭
+ exp 2π i k

2
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭
+ exp 2π i l

2
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

+ exp 2π i h
2
+ k

2
+ l

2
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Cl1 Cl2 Cl3

Cl4

Shkl = fNa 1+ exp π i h+ k( ){ }+ exp π i h+ l( ){ }+ exp π i k + l( ){ }⎡⎣ ⎤⎦
+ fCl exp π i h( ){ }+ exp π i k( ){ }+ exp π i l( ){ }+ exp π i h+ k + l( ){ }⎡⎣ ⎤⎦

= fNa 1+ (−1)
h+k + (−1)h+l + (−1)k+l⎡

⎣
⎤
⎦ + fCl (−1)

h + (−1)k + (−1)l + (−1)h+k+l⎡
⎣

⎤
⎦

1
2 ,0,0( )           0, 1

2 ,0( )           0,0, 1
2( ) 1

2 ,
1
2 .
1
2( )

59

Shkl = fNa i 4+ fCl i 4 = 4 fNa + fCl( )
Shkl = fNa i 4+ fCl i −4( ) = 4 fNa − fCl( )
Shkl = fNa i 0+ fCl i 0 = 0

Shkl = 0

Shkl = 0

Shkl = 0

Shkl = 0

Shkl = 0

h k l
even even even

odd odd odd

odd even even

even odd even

even even odd

odd odd even

odd even odd

even odd odd

Systematic extinctions 
due to face centering

c*

a*

(0,0,2)

b*

(2,0,0)

(0,2,0)

(0,2,2)

(2,2,2)

(1,1,1)

(2,2,0)
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Other systematic absences 
• Example: Systematic absences expected for 

a crystal with a 41 screw axis.

x, y, z 41⎯ →⎯ y ,x, z + 1
4

41⎯ →⎯ x , y , z + 1
2

41⎯ →⎯ y,x , z + 3
4

41 screw axis along c

Shkl ∝ f p
p
∑

exp 2π i hx + ky + lz( ){ }
+exp 2π i −hy + kx + lz( ){ } i e π i 2( )l

+exp 2π i −hx − ky + lz( ){ } i e π i( )l

+exp 2π i hy − kx + lz( ){ } i e 3π i 2( )l

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

(Every atom belongs to set of 4 symmetry-related atoms.)

(p refers to summation over the sets of symmetry-related atoms.)
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… and l = odd

Shkl ∝ f p
p
∑

⎛

⎝
⎜

⎞

⎠
⎟ exp 2π ilz( ){ } i 1+ eπ i 2 + eπ i + e3π i 2⎡

⎣
⎤
⎦ = 0

1st 
term

2nd 
term

3rd 
term

4th 
term

… and l = 2, 6, 10 …

Shkl ∝ f p
p
∑

⎛

⎝
⎜

⎞

⎠
⎟ exp 2π ilz( ){ } i 1+ eπ i +1+ eπ i⎡

⎣
⎤
⎦ = 0

(-1) (-1)
… and l = 4, 8, 12 …

Shkl ∝ ∼ 1+1+1+1⎡⎣ ⎤⎦ (non zero)

Consider h = k = 0

For h = k = 0, only reflections with l = 4, 8, 12 … will be observed.
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Other systematic absences 
• Example: crystal with an a-glide ⊥ to a 41 axis. 
 (41 screw axis along c, ∴ a glide || to the ab-plane) 

This will be zero when the term in brackets is zero: 

If l = 0,then absences occur where h = odd. 
For b-glide ⊥ to c-axis, find absences where k = odd (l = 0).

x, y, z a−glide⎯ →⎯⎯⎯ x + 1
2 , y, z

a−glide⎯ →⎯⎯⎯ x +1, y, z

Shkl ∝ f p
p
∑

exp 2π i hx + ky + lz( ){ }
+exp 2π i h x +1 2( )+ ky − lz( ){ }

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

exp 2π i hx + ky + lz( ){ } = −exp 2π i h x +1 2( )+ ky − lz( ){ }
exp 2π i lz( ){ } = −exp 2π i h 2− lz( ){ } = −eπ ih exp 2π i −lz( ){ }

exp 2π ilz{ } = −(−1)h exp −2π ilz{ }
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Symmetry of the Diffraction Pattern; 
Equivalent Reflections - Laue Symmetry

 The pattern of single crystal diffraction “spots” is often 
referred to as the intensity-weighted reciprocal space.  
Including the intensities, what symmetries should the 
intensity-weighted reciprocal space exhibit?  
– In the absence of absorption and/or “anomalous scattering”, 

reflections related to each other by inversion in reciprocal space, 
(h,k,l) and (-h,-k,-l), should be of equal intensity.  This is called 
Friedel’s Law and it applies even for noncentrosymmetric space 
groups (no inversion center). 

 The Patterson symmetry adds an inversion center if the 
space group is acentric.  Therefore, in centrosymmetric 
cases, the Patterson symmetry is the same as the 
symmetry of the diffraction pattern.
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Symmetry of the Diffraction Pattern; 
Equivalent Reflections - Laue Symmetry

 Translation of a crystal leaves reciprocal space 
unaffected. Therefore, the translational parts of 
symmetry operations can be ignored in finding 
reflections that are expected to be equivalent. 
– Screw operations have same symmetry effect as 

simple rotational point group operations 
– Glide operations have the same symmetry effect as 

simple mirror planes

See: Table 11.4, p. 382 in Cotton.
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Tl(1+x)BaSrCa(1–x)Cu2O(7-δ) Superconductor

• Within the disorder 
model (x = 0.22), the 
space group is 
symmorphic: P4/mmm.  

• The reciprocal lattice 
intensities reflect each 
symmetry operation 

• No systematic 
absences

a = 3.8234 Å; c = 12.384 Å
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Tl(1+x)BaSrCa(1-x)Cu2O(7-δ) Superconductor

• Simulated electron 
diffraction 

• 001 plane.  
• The reciprocal lattice 

intensities reflect 
each symmetry 
operation 

• No systematic 
absences
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Tl(1+x)BaSrCa(1-x)Cu2O(7-δ) Superconductor

• Simulated electron 
diffraction pattern 

• 100 plane.  
• The reciprocal 

lattice intensities 
reflect each 
symmetry 
operation 

• No systematic 
absences
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Tl(1+x)BaSrCa(1-x)Cu2O(7-δ) Superconductor

• Simulated electron 
diffraction pattern 

• 110 plane.  
• The reciprocal 

lattice intensities 
reflect each 
symmetry 
operation 

• No systematic 
absences
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Cs-Leucite, low symmetry (298K)
• At high temp (473K), 

Cs-leucite 
(CsAlSi2O6) adopts a 
cubic structure 
(space group:        ), 
a = 13.7062Å. 

• At room temperature, 
the symmetry is 
lower 

• What is it?

Ia3d

I 41
a 32

d
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Leucite (298K), l = 0 plane

• Simulated electron 
diffraction pattern 

• What symmetries 
are possible?
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Leucite (298K), h = 0 plane

• What symmetries are 
suggested?
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Leucite (298K), l = 0 plane

• Adjacent spots have 
a separation of 
0.153 Å–1.  

• 1/(0.153 Å–1) = 6.536 Å.  
What does this 
number mean?
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Leucite (298K), l = 0 plane

• Intense peaks are 
indexed. (How was 
this done?) 
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Powder Diffraction
• In principle, powder diffraction is nothing 

more than a ‘spatially averaged’ version of 
single-crystal diffraction.   

• Much of the rich spatial information one 
gathers in single-crystal data is lost in 
powder diffraction, only the 2θ information 
remains. 

• However, once (if) the cell can be inferred, 
powder diffraction data is still quite 
powerful.
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NaCl: h = 0 and h = k planes

• The circles correspond to reflections on the 
same “cone”, i.e., with the same 2θ values.
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Laue Equations
• These are relations connecting observed 2θ 

values and indices: 
 Recall: 

 earlier we found

a∗ i a = b∗ i b = c∗ i c = 1
a∗ i b = a∗ i c = b∗ i a = b∗ i c = c∗ i a = c∗ i b = 0

K hkl =
2
λ

sinθ          K hkl iK hkl =
4
λ2 sin2θ

or

sin2θ = λ2

4
Khkl

2 = λ
2dhkl

⎛

⎝⎜
⎞

⎠⎟

2
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• Any RLV is written as K hkl = ha
∗ + kb∗ + lc∗

K hkl iK hkl = h
2a∗ i a∗ + k2b∗ i b∗ + l2c∗ i c∗

            + 2hka∗ i b∗ + 2hla∗ i c∗ + 2klb∗ i c∗ = 4
λ2 sin2θ

a∗ = 1
a
x̂ ; b∗ = 1

b
ŷ ; c∗ = 1

c
ẑ

K 2 = h
2

a2
+ k

2

b2
+ l

2

c2
⇒ sin2θ = λ

2
⎛
⎝⎜

⎞
⎠⎟

2
h2

a2
+ k

2

b2
+ l

2

c2
⎛

⎝⎜
⎞

⎠⎟

• Special cases: 
 Orthorhombic 
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• Cubic and Tetragonal - special cases of 
orthorhombic: 

• Hexagonal

α = β = 90° γ = 120°
out of plane of paperc

a = a( 3
2
x̂ − 1
2
ŷ)

b = aŷ
c = cẑ

V = a i (b× c) = 3
2
a2c

sin2θ = λ
2a

⎛
⎝⎜

⎞
⎠⎟

2

(h2 + k2 + l2 )  cubic

sin2θ = λ2 h2 + k2

4a2 + l2

4c2

⎛

⎝⎜
⎞

⎠⎟
  tetragonal
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• Reciprocal lattice 

• Laue equation

a∗ = b× c
V

= acx̂
3 2( )a2c

= 2
3a
x̂

b∗ = 1
a

x̂

3
+ ŷ

⎛
⎝⎜

⎞
⎠⎟

 ;    c∗ = 1
c
ẑ

sin2θ = λ2

4
K iK = λ2

4
h2 a∗

2
+ k2 b∗

2
+ l2 c∗

2
+ 2hka∗ i b∗⎡

⎣⎢
⎤
⎦⎥

sin2θ = λ2

3a2
h2 + k2 + hk( )+ λ2

4c2
l2
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