
Angular Momentum: Key Results 

Before reading this handout, you should review Survival Facts from Quantum 
Mechanics if necessary.  The last section of that handout is of particular importance for 
the developments discussed below, so it is repeated here: 

From Survival Facts: 

Commuting operators have common eigenfunctions.  Suppose A!  and B!  commute:   
[A! , B!] = A!  B!  – B!  A!  = 0. 

Let {ϕ i} be the set of eigenfunctions of A!: 

! !

If ϕ i is the only eigenfunction of A!  with eigenvalue ai, then B!ϕ i ∝  ϕ i (in other words, 
B!ϕ i can only be an eigenfunction of A!  with eigenvalue ai if it differs from ϕ i by at most a 
constant multiplicative factor – see p. 2 of Survival Facts).  Thus, 

�  

If ai is a degenerate eigenvalue, i.e. there are more than one eigenfunctions of A!  with 
eigenvalue ai, then we can take linear combinations of these eigenfunctions to satisfy this 
condition. 

Angular Momentum

For quantum mechanical problems involving angular momentum, ! , the key 
operators of interest are M!2 and M! z in that they are two commuting operators for which 
angular momentum eigenfunctions and eigenvalues apply.  [We use the general symbols 
M!2 and M! z for any angular momentum. In specific applications these could be orbital 
angular momentum operators (for which the symbols L!2 and L! z are used), electron spin 
angular momentum (S!2 and S! z), the sum of spin and orbital angular momentum (J!2 and 
J! z), or nuclear spin angular momentum (I!2 and I! z).]  The commutation properties of 
angular momentum operators are sufficient to establish the eigenvalues of these 
operators, as we shall see below.  Also important are the angular momentum ladder 
operators (M!+ and M!–) that are useful in achieving this goal and in calculations involving 
angular momentum generally.  We begin with the definition of the angular momentum 
operators and their commutation relations (see Survival Facts, p. 4): 

!  

Âϕ i = aiϕ i
then B̂ Âϕ i( ) = B̂ aiϕ i( ) = ai B̂ϕ i( )

but ÂB̂ = B̂Â, so Â B̂ϕ i( ) = ai B̂ϕ i( )
∴The function B̂ϕ i  is an eigenfunction of  with eigenvalue ai .

B̂ϕ i = biϕ i  for some constant bi .

M̂

M̂ 2 = M̂ i M̂ = M̂x
2 + M̂ y

2 + M̂z
2 (1)

[M̂x , M̂ y ]= i!M̂z  and cyclic permutations, [M̂ y , M̂z ]= i!M̂x   [M̂ y , M̂z ]= i!M̂x (2)

[M̂x , M̂
2]= [M̂ y , M̂

2]= [M̂z , M̂
2]= 0 (3)
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Proof that M!2 and M! x commute involves repeated application of the first commutation relations: 

!

The other two relations are proved analogously. 

 M!x,  M!y, and M! z do not commute with each other, so simultaneous eigenfunctions of 
all three operators and M!2 cannot be found. We therefore seek simultaneous eigenfunc-
tions of M!2 and M! z.  Let us introduce the ladder operators, which are defined as 

!  

Because M!+ and M!– commute with M!2, the result of operating on an eigenfunction of 
M!2 with M!+ or M!– is still an eigenfunction of M!2 with an unchanged eigenvalue. In other 
words, if al and bm are the respective eigenvalues of M!2 and M! z for an eigenfunction we 
call , then al is also the eigenvalue of M!2 for the eigenfunctions  or   
(see the argument at the beginning of this handout).  However, the ladder operators do not 
commute with M! z, 

!  

Operating on ! with both sides of equation (6),  

!  

We see that operating on with M!+ and M!– generates M! z 
eigenfunctions, and , that have M! z 
eigenvalues that are respectively bm + " and bm – ".  M!+ moves 
us up the ‘ladder’ by a rung, M!– moves us down the ‘ladder’ by 
a rung.  Repeated operation with M!+ and M!– will generate a whole ‘ladder’ of M! z 
eigenfunctions, each with eigenvalues that differ by ".  The ‘ladder’ is bounded at both 
the low and high ends, which can be seen by considering the operator ! .  On 
physical grounds, the eigenvalues of ! cannot be negative and it has the same 
eigenfunctions as M!2 and M! z since it is identical to : 

!  

[M̂x , M̂
2]= [M̂x , M̂ y

2]+ [M̂x , M̂z
2]

1st  term: [M̂x , M̂ y
2]= M̂x M̂ y

2 − M̂ y
2 M̂x = M̂x M̂ y

2 − M̂ y ( M̂x M̂ y − i!M̂z ) = M̂x M̂ y
2 − ( M̂ y M̂x )M̂ y + i!M̂ y M̂z

= M̂x M̂ y
2 − ( M̂x M̂ y − i!M̂z )M̂ y + i!M̂ y M̂z = i!(MyMz + MzMy )

2nd  term: [M̂x , M̂z
2]= M̂x M̂z

2 − M̂z
2 M̂x = M̂x M̂z

2 − M̂z ( M̂x M̂z + i!M̂ y ) = M̂x M̂ y
2 − ( M̂z M̂x )M̂z − i!M̂z M̂ y

= M̂x M̂ y
2 − ( M̂x M̂z + i!M̂ y )M̂z − i!M̂z M̂ y = −i!( M̂ y M̂z + M̂z M̂ y )

∴[M̂x , M̂
2]= 0

M̂+ = M̂x + iM̂ y   ;   M̂− = M̂x − iM̂ y (4)

both commute with M̂ 2:  [M̂± , M̂ 2]= [M̂x , M̂
2]± i[M̂ y , M̂

2]= 0 (5)

lm M̂+ lm M̂− lm

[M̂± , M̂z ]= [M̂x ± iM̂ y , M̂z ]= [M̂x , M̂z ]± i[M̂ y , M̂z ]= −i!M̂ y ∓ !M̂x = ∓!M̂+

M̂± M̂z = M̂z M̂± ∓ !M̂±   Rearranging,

                                 M̂z M̂± = M̂± ( M̂z ± !)                 (6)

lm

M̂z M̂± lm = M̂± ( M̂z ± !) lm = (bm ± !)M̂± lm
or  M̂z M̂± lm⎡⎣ ⎤⎦ = (bm ± !) M̂± lm⎡⎣ ⎤⎦

lm
M̂+ lm M̂– lm

M̂x
2 + M̂ y

2

M̂x
2 + M̂ y

2

M̂ 2 − M̂z
2

( M̂x
2 + M̂ y

2 ) lm = ( M̂ 2 − M̂z
2 ) lm = (al − bm

2 ) lm  ⇒   al ≥ bm
2  ⇒   – al ≤ bm ≤ al
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If M!+ operates on the eigenfunction at the ‘top of the ladder’, with eigenvalue 
bmax, it must annihilate it.  Likewise, M!– must annihilate the eigenfunction at the ‘bottom 
of the ladder’, with eigenvalue bmin.  We can use a little operator algebra to 
establish the relationship between bmax and bmin: 

!

Since the ladder operators generate adjacent M! z eigenfunctions with eigenvalues that 
differ by ", it follows that bmax = bmin + n" = –bmax + n", where n is an integer.  Then, 

!

If we let l = ½ n, then 

!  (8)

Recalling that the eigenvalues of M! z form a ‘ladder’ with steps spaced by ", we conclude

�    (9)

The possibility that l is half-integral arises naturally; for orbital angular momentum only 
integral values occur, for spin angular momentum half-integral values may occur. 

The preceding shows that the commutation relations alone are sufficient to generate 
the characteristics of angular momenta in quantum mechanics. However, while we know 
that ! , we need the proportionality constants for use in calculations.  Let 
! , where are as yet undetermined constants, 
though we do know that since �   First, when the top and bottom 
rungs of the ‘ladder’ are not involved, 

� .

We then make use of the fact that �  are adjoint, � , which yields 

 !  

We have the magnitudes of the proportionality constants, but they are undetermined 
to within a ‘phase factor’, e–iα, but the choice of this ‘phase factor’ has no physical 
consequences and α equal to zero is usually chosen.  Thus we have the final relations, 

!  

l  max

l  min

M̂∓ M̂± = M̂x ∓ iM̂ y( ) M̂x ± iM̂ y( ) = M̂x
2 + M̂ y

2 ± i[M̂x , M̂ y ]

M̂∓ M̂± = M̂
2 − M̂z

2 ∓ "M̂z (7)

M̂− M̂+ l  max = M̂ 2 − M̂z
2 − "M̂z( ) l  max = (al − bmax

2 − !bmax ) l  max = 0

∴bmax
2 + !bmax = al   and similarly,  bmin

2 − !bmin = al
Setting these equal and rearranging we find (bmax + bmin )(bmax − bmin + !) = 0
Since bmax ≥ bmin , the only acceptable root for this equation is bmax = −bmin.

bmax =
1
2 n!      bmin = − 1

2 n!     n = 0,1,2,3,…
al = bmax

2 + !bmax = ( 1
4 n

2 + 1
2 n)!2

bmax = l!     bmin = −l!    l = 0, 1
2 ,1, 3

2 ,…  and   al = l(l +1)!2

bm = m!     m = −l,−l +1,…,l −1,l

M̂± lm ∝ l  m±1
M̂± lm ∝ !c±

lm l  m±1  where c+
lm  and c−

lm

−l ≤ m ≤ l,  c+
ll  and c−

l−l = 0.

M̂±ψ lm M̂±ψ lm = !2 c±
lm 2

ψ l  m±1 ψ l  m±1 = !2 c±
lm 2

M̂+  and M̂− ( M̂± )
† = M̂∓

M̂±ψ lm M̂±ψ lm = ψ lm M̂± M̂∓ ψ lm = ψ lm M̂
2 − M̂z ( M̂z ± !)ψ lm

∴ c±
lm 2 = [l(l +1)−m(m±1)]

M̂+ lm = l(l +1)−m(m+1) l  m+1    (= 0 when m = l)           (10)
M̂− lm = l(l +1)−m(m−1) l  m−1    (= 0 when m = −l)           (11)
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Practical Use of Ladder Operators

The ladder operators can be quite useful in working out the eigenfunctions of 
summed angular momenta.  Working out some examples in detail can show the way they 
are applied.  Let us consider the following question: how are the eigenfunctions of L!2, L! z, 
S!2, and S! z obtained for a two-electron configuration?  To address this question, let’s look 
at specific problem: what Slater determinants or combinations of Slater determinants are 
used to write the electronic states of a d2 
configuration? 

First, recall that the states of a d2 
configuration are 3F, 3P, 1G, 1D, and 1S.  
Before going further, we observe that 10 of 
the 45 determinants that can be written for a 
d2 configuration can be assigned 
immediately to the 3F and 1G states.  These 
are illustrated here and are immediately 
assignable because they exhibit extreme 
values of ML and/or MS.  The determinants 
with ML = ml1 + ml2 = ±4 must be two of 9 
degenerate eigenfunctions that belong to the 
1G state simply because the 1G state is the 
only state with a large enough value of L (= 
4).  Similarly, subject to the constraint that 
MS = ms1 + ms2 = ±1, determinants with ML = 
ml1 + ml2 = ±3, ±2 must belong to the 3F state because the 3F state is the only state with a 
large enough value of L (= 3) that also has S = 1. 

Getting (combinations of) determinants for the other states is an indirect process.  No 
single determinant can be unambiguously assigned to the 3P state, for example, because 
there are at least two determinants for every pair of ML and MS values for the 3P state.  
The 3P state must have one component with ML = 1 and MS = 1, but there are two 
determinants with these characteristics: | 2+–1+〉 and |1+0+〉 (the notation is a shortening of 
that used in the illustrations; the numbers give the ml values and the + and – signs 
respectively refer to α and β eigenfunctions of the individual electrons).  Both the states 
3P and 3F have components with ML = 1 and MS = 1, but as we shall see, neither of these 
two determinants belongs solely to 3P or 3F.  We do, however, have the component of 3F 
with ML = 2 and MS = 1 and our strategy is to operate on this determinant with an 
appropriate lowering operator, L!– , which will generate an eigenfunction with ML = 1 
(and MS = 1) that still belongs to 3F because a 
lowering operator does not change the value of 
L, it just lowers ML by one step.   
The total angular momentum operators L!   and S!  
are just the vector sum of the individual electron 
operators (the “hats” on the unit vectors do not 
indicate operators, next page): 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!

The general relations (10) and (11) for the ladder operators hold for both the total angular 
momenta and the individual angular momenta: 

!  

The symbol “σ” has been used in (20) to signify either !  and the square root factors 
have been evaluated for the case of individual spins; !   in 
all individual electron cases.

As an example, let’s apply L!– to the 3F determinant with ML = 2 and MS = 1: 

!  

On the left-hand side of these equations, the total orbital angular momentum lowering 
operator is applied using L and ML as in equation (16); on the right-hand side of these 
equations, the individual orbital angular momentum lowering operators are applied using 
li (= 2 for d electrons) and mli values as in equation (18).  When simplified, we obtain the 
normalized combination of the two determinants identified above.   Because the 3P and 
3F state wavefunctions must be orthogonal to each other, the correct combination of the 
two determinants for 3P can be found be setting 〈3P; 1 1|3F; 1 1〉 = 0 and requiring that the 
3P combination also be normalized, 

!  

L̂ = L̂xx̂ + L̂yŷ + L̂z ẑ = L̂1 + L̂2 = ( L̂x1 + L̂x2 )x̂ + ( L̂y1 + L̂y2 )ŷ + ( L̂z1 + L̂z2 )ẑ (12)

Ŝ = Ŝxx̂ + Ŝ yŷ + Ŝz ẑ = Ŝ1 + Ŝ2 = (Ŝx1 + Ŝx2 )x̂ + (Ŝ y1 + Ŝ y2 )ŷ + (Ŝz1 + Ŝz2 )ẑ (13)

i.e., the operator components add:    L̂z = L̂z1 + L̂z2      Ŝz = Ŝz1 + Ŝz2  , etc… (14)

It follows that the ladder operators add:    L̂± = L̂±1 + L̂±2      Ŝ± = Ŝ±1 + Ŝ±2 (15)

L̂± LMLSMS = L(L+1)− ML(ML ±1) L ML ±1 SMS           (16)

Ŝ± LMLSMS = S(S +1)− MS (MS ±1) LMLS  MS ±1           (17)

L̂1± ml1ml1ms1ms2 = l1(l1 +1)−ml1(ml1 ±1) ml1 +1 ml2ms1ms2            (18)

L̂2± ml1ml1ms1ms2 = l2(l2 +1)−ml2(ml2 ±1) ml1  ml2 +1 ms1ms2           (19)

Ŝ1+α1σ 2 = 0   Ŝ1+β1σ 2 =α1σ 2    Ŝ1−α1σ 2 = β1σ 2    Ŝ1−β1σ 2 = 0

Ŝ2+σ 1α 2 = 0   Ŝ2+σ 1β2 =σ 1α 2    Ŝ2−σ 1α 2 =σ 1β2    Ŝ2−σ 1β2 = 0
               (20)

α  or β
sj (sj +1)−msj (msj ±1) = 1 or 0

L̂−
3F;MLMS = ( L̂1− + L̂2− ) ml1ml1ms1ms2
L̂−

3F;2 1 = ( L̂1− + L̂2− ) 2+0+

3(3+1)− 2(2−1) 3F;1 1 = 2(2+1)− 2(2−1) 1+0+ + 2(2+1)− 0(−1−1) 2+ −1+

3F;1 1 = 2
5 1+0+ + 3

5 2+ −1+

3P;1 1 = c1 1+0+ + c2 2+ −1+   ;  c1
2 + c2

2 = 1
3P;1 1 3F;1 1 = 2

5c1 +
3
5c2 = 0

⎫
⎬
⎪

⎭⎪
  ⇒   c1 =

3
5      c2 = − 2

5

3P;1 1 = 3
5 1+0+ − 2

5 2+ −1+
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Spin lowering operators are very easily applied.  Any spin wavefunction of the form 
α1α2 (S = 1, MS = 1) can be lowered with by applying S!–: 

!  

Let's apply this, for example, to obtain two MS = 0 components of 3F,  

!

We can confirm that the 1G state wavefunction |1G; 3 0〉 is orthogonal to |3F; 3 0〉: 

!  

This can be lowered once again with L!– to obtain |1G; 2 0〉,

�  

Continuing in this manner we can generate the combinations of determinants appropriate 
for any other of the d2 configuration wavefunctions: 3F, 3P, 1G, 1D, and 1S. 

Another context where the ladder operators are used is in the evaluation of matrix 
elements in involving L!x and L!y or S!x and S!y operators.  Since we usually choose the z-
axis as our “quantization axis” (i.e., we deal with simultaneous eigenfunctions of L! z or S! z 
along with L!2 or S!2), operations with L! z are usually straightforward.  We deal with the L!x 
and L!y operators using L!+± L!–.  Table 2 on the following page is derived with just a 
modest effort.  For example, if we freely interconvert the real with the complex forms of 
d-orbitals and L!x and L!y with L!+ and L!– , we can write 

!  

where we’ve made use of a d-orbital conversion given in Table 1.  

Ŝ− S = 1,MS = 1 = (Ŝ1− + Ŝ2− ) α1α 2

1(1+1)−1(1−1) S = 1,MS = 0 = β1α 2 + α1β2
S = 1,MS = 0 = 1

2 β1α 2 + α1β2( )

Ŝ−
3F;3 1 = (Ŝ1− + Ŝ2− ) 2+1+       Ŝ−

3F;2 1 = (Ŝ1− + Ŝ2− ) 2+0+

1(1+1)−1(1−1) 3F;3 0 = 2−1+ + 2+1−       1(1+1)−1(1−1) 3F;2 1 = 2−0+ + 2+0−

3F;3 0 = 1
2 2−1+ + 2+1−( )       3F;2 0 = 1

2 2−0+ + 2+0−( )

L̂−
1G;MLMS = ( L̂1− + L̂2− ) 1G;ml1ml1ms1ms2

L̂−
1G;4 0 = ( L̂1− + L̂2− ) 2+2−

4(4+1)− 4(4−1) 1G;3 0 = 2(2+1)− 2(2−1) 2+1− − 1+2−( )
Swapping the columns in the last determinant changes its sign,

1G;3 0 = 1
2 2+1− − 2−1+( )

L̂−
1G;3 0 = ( L̂1− + L̂2− ) 1

2 2+1− − 2−1+( )
4(4+1)− 4(4−1) 1G;3 0 = 2(2+1)−2(2−1)

2 1+1− − 1−1+( )+ 2(2+1)−1(1−1)
2 2+0− − 2−0+( )⎡

⎣⎢
⎤
⎦⎥

recalling that 1+1− = − 1−1+  this simplifies to

1G;2 0 = 2
7

1+1− + 3
14 2+0− − 2−0+( )

L̂x z
2 ≡ L̂x 0 = L̂+ + L̂−( ) 0 = 3

2 1 + −1⎡⎣ ⎤⎦ = −i 3 × i
2
1 + −1⎡⎣ ⎤⎦ ≡ −i 3 yz
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Table 1. Complex d orbitals (L! z eigenfunctions)* and Real d orbitals 

!  

*Signs chosen vary, but a consistent set must be used. 

All of the entries in Table 2 can be verified by repeated application of operations like the 
one illustrated above, along with the use of Table 1, the ladder operator definitions (4), 
and equations (18) and (19). 

Table 2. Effect of orbital angular momentum operators on the real d orbitals 

!  

Reference: Ballhausen, C. J. Introduction to Ligand Field Theory 

When computing g-values in EPR, a formula from 2nd order perturbation theory 
emerges wherein excited states, , are coupled to the ground state, ψ0, via the angular 
momentum operators: 

!  

For the real d orbitals, the operator relations 
in Table 2 are of the most direct use.  These 
are used to build the ‘magic pentagon’ 
discussed in lecture.  The L! z operator couples 
real orbitals that are combinations of complex 
orbitals with the same value of ml (Table 1), 
while the L!x and the L!y operators couple 
orbitals with values of ml separated by 1 – 
because these operators are expressible as 
combinations of the ladder operators.

15
8π

× f (r)×

1
4 sin

2θe2iϕ = 2 x2 − y2 = 1
2 2 + −2⎡⎣ ⎤⎦

−sinθ cosθeiϕ = 1 yz = i
2
1 + −1⎡⎣ ⎤⎦

1
6 (3cos

2θ −1) = 0 z2 = 0

sinθ cosθe− iϕ = −1 xz = 1
2
− 1 + −1⎡⎣ ⎤⎦

1
4 sin

2θe−2iϕ = −2 xy = − i
2
2 − −2⎡⎣ ⎤⎦

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

L̂xdxz = −idxy L̂ydxz = −i 3d
z2
+ id

x2− y2
L̂zdxz = idyz

L̂xdyz = i 3dz2 + idx2− y2 L̂ydyz = idxy L̂zdyz = −idxz
L̂xdxy = idxz L̂ydxy = −idyz L̂zdxy = −2id

x2− y2

L̂xdx2− y2 = −idyz L̂ydx2− y2 = −idxz L̂zdx2− y2 = 2idxy

L̂xdz2 = −i 3dyz L̂ydz2 = i 3dxz L̂zdz2 = 0

ψ n

gij = ge − 2ζ
ψ 0 | L̂i |ψ n ψ n | L̂j |ψ 0

En − E0n
∑    where i and j are x, y or z
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