APPENDIX A: MATRIX ELEMENTS
AND EIGENVALUES

The wave functions ¥, ¢, - ¥, -+ for the states of a quantum system are
normalized and orthogonal, obeying the relations

[utpado=1 W)

[umpndo=0  n#m @)

In Dirac’s notation y, and ¥} are designated |n) and (n| while the orthogonality
integrals are denoted by {m|n) = J,,,. If A is any operator corresponding to a physical
quantity the array of integrals

Ay = [ WY, do = {mlAlny 3

are known as the matrix elements of 4 and give a matrix representation of the operator

A, of the form
Au A
Ay Az (4)

The matrix is Hermitian, i.e., 4, = A},. A state which satisfies the relation Ay, =
ay, or'Aln) = a,|n) is called an eigenstate of 4 and a, is the corresponding eigen-
value. Eigenstates having different eigenvalues for 4 are always orthogonal, and if
¥4,¥, ... are all eigenstates of 4 the matrix takes the diagonal form

a, 0---
F %“l o

The matrix of the operator AB is obtained from those of 4 and B by matrix multi-
plication

CllAB|m) =} <I|Aln){n|B|m} (6)

This result depends on the property that the states |#n) form a complete set, such that

2 Iny<nl =1 ()



Equation (7) can be used to expand any wave function [y ) in terms of the set |n)
W) =3 In>nly) (®)
In ordinary notation this reads

=L Cl and C,=[urydo.

Frequently one needs to find the eigenvalues and eigenstates of an operator,
usually the energy operator #’, and the following procedure is used.
Consider the state Y =) C,,, and let #y =Y C’,¥,. Then the vector C’, is

obtained from C, as C', =Y #,,C,. Now suppose #y = Ey. Then it follows that

Y H mCnm = EC, ©)
m .
or in matrix notation
H—E Hiyy C,
”2_1 H 22 '.‘E C;2 =0 10)

The allowed energy values E are the roots of the so-called secular determinant
| # y — EO,,| Of the matrix (10), while the coefficients C,, which satisfy (10), and are
correctly normalized with ) |C,|> =1 are the eigenvectors. The eigenvalues of a

Hermitian matrix are always real. In general the matrices of two operators do not
commute, AB # BA; but if they do then both operators have the same eigenvectors.

PROBLEMS

1. Verify by matrix multiplication the relations 0.0, = ic, and o =1 for the Pauli spin
matrices (Appendix C).

2. The matrix I-S for two spins of 1/2 is

oo, [} 0 0 0
afn |0 =3 % O
Bean 0 3 - 0

s

BB LO O O

Find its eigenvalues and eigenvectors.

SUGGESTIONS FOR FURTHER READING

Landau and Lifshitz: Chapters 1 and 2.
Schiff: Quantum Mechanics (New York: McGraw-Hill Book Co., Inc., 1955). Chapter 6.
Eyring, Walter, and Kimball: Page 31.

Margenau and Murphy: The Mathematics of Physics and Chemistry, Vol. 1 (New York:
McGraw-Hill Book Co., Inc., 1956). Chapter 10.



APPENDIX B: TIME-INDEPENDENT
PERTURBATION THEORY

The problem is to find the stationary states of a system with the Hamiltonian
H, + V, where Vis a small perturbation. The unperturbed energies and wave functions
are E,, E, --- and y,, Y, - - - and we require the corrections to E, and y, as a series
expansion in powers of V.

1. UNPERTURBED LEVEL NONDEGENERATE

Following Eq. (10) of Appendix A we seek solutions of the linear equations

(En + Vnn - E) Vnm T Cn
Krm (Em + me - E) Cm =0 (1)

The zeroth approximation is"E 2 E, and the vector C then has the form (1,0,0, .. .).
Next, the first-order terms from the first row of Egs. (1) give

E,+Vy—E)y140+---=0 2
and the first-order energy correction is ¥,,. The second row, to first order in ¥ becomes
Ven® 1+ (Em - En)cm =0 (3)

and yields a correction to C,.. Now substitution of the new coefficients back into the
first row gives the second-order energy shift. The results then are

vf=wn—n;mEmj"Enwm+~- @
Byt Vo 3 5 )

2. DOUBLY DEGENERATE LEVELS COUPLED BY V

We consider two states y/,, ¥, which both have energy E, initially. Equations (4)
and (5) break down because (E, — E,) = 0. Instead one must solve the matrix equa-
tions directly. Setting E = (E, + &) they become

Vii—¢ Vi ][Cl]
=0 6
[ Va1 Ve —e]|C, ©

The same procedure is used for any number of degenerate levels.



3. DOUBLY DEGENERATE LEVELS COUPLED TO
HIGHER STATES

Sometimes the matrix elements of ¥ between y, and ¥, vanish, but there are
elements V,,,, V>, to higher states, and the equations to be solved are

(Eo — E) 0 Vim C,
0 (B —E) Vi c,
=0 @)
le Vm2 (Em + me - E) Cm
The perturbed wave functions now take the form
le VmZ )
=C - C - 8
b= ColVi = T ) + G = T 2 ®
while the coefficients and the energy are found by solving the matrix
Uy —¢ Uy, ][Cl]
=0 9
[ Uy Un—¢]lC ©)
The elements U, (i, k = 1, 2) are defined as
ViVenk
U, = =y mm 1
ik ;Em _ EO ( 0)

and constitute an effective coupling between the degenerate states.
If the perturbation has both V,, and V,,, types of element one must add Uy to
V. and solve the combined 2 x 2 matrix.

SUGGESTIONS FOR FURTHER READING

Landau and Lifshitz: Chapter 6.
Eyring, Walter, and Kimball: Chapter 7.

APPENDIX G: SPIN ANGULAR MOMENTUM

The same principles apply to both electron and nuclear spins. Here we shall deal
with electron spin S. —— note: they avaid carrying avov %

The orbital angular momentum L# of a particle is defined as r x p, where p is the
momentum. The quantum mechanical operator for L is —i(r x V), and leads imme-
diately to the conclusion that the different components of L do not commute, but
L.L,—L,L,=IiL,.

The spin angular momentum Sh of a group of electrons obeys the same com-
mutation rules as L:

S.S, —S,S, = iS, 1)



and two others derived by rotating the x, y,z suffixes. The squared spin S? =
(S2 + S? + S?) commutes with S, S,, and S,, and has the value S(S + 1) where S is
the total spin. The entire theory of spin follows from (1). First it is useful to introduce

the shift operators

St =8, +iS,
- . 2
ST =S5,-1iS,
and remark that (1) leads to the important relations
S.8*=8*S,+1) 3
(S?—S2)=(S57S* +5,)=(S*S™ - 5,) , @)

A single electron has S = 1/2, and the two spin states |a), |), are eigenstates of
S, (see Appendix A) with value +1/2.

Slad =3%ad  S.IB> = —1B) )
We shall now derive important relations for S* and S~
S*IBy=loay  S*|e>=0
STy =18>  STIB>=0

The first is proved by showing that S*|B8) is an eigenstate of S, with value +1/2. We

use (3) and (5). B
. S*IBY=S"(S,+ DIy =5 -1Ip>
=1-5YB) )

This only shows that S*|B) is a multiple of |a). It is necessary to check that S*|B) is
correctly normalized. The complex conjugate state is {|S~, and we obtain the nor-
malization integral <8|S~S*|8>. By (4) and (5) this reduces to {f|S? — S? — S,|f> =
{B|S? + }|B)>. Finally it is necessary to show that

S?=% (spin3d) ®)

From (5), S? acting on |a) or |B) simply multiplies each by 1/4. Hence S2 = 1/4; by
symmetry the same is true of SZ and SZ, so (8) holds. Thus we find that (f|S~S™|8) =
{BIB> =1, and so S*|B) is correctly normalized and may be identified with |a).

To derive the second relation (6) we prove that the normalization {a|S~S™*|«)
of S*|x) vanishes, so the state does not exist. The matrix element is just

alS? — 87 — S,lay = <alS* — Fla) = 0

The matrix elements of the operators S,, S,, S, are usually represented by the
Pauli spin matrices o,, 0,, 6,, with S = }6. They are

R T R

The states of a general spin S > 1/2 are labeled by the eigenvalue Mg or M of S,
and written |S, M) or just |M)

(6)

S|S, M) = M|S, M) (10

M takes (2S + 1) possible values S, (S — 1) - -+ —S. It can be shown that S* and §~
only have matrix elements connecting M with (M + 1).

(M + 1S IMY =(M|S™IM + 1) =\/S(S +1)-MM+1) (11)

Raising and lowering M, states with general angular momentum J (J could be S or L or J):

J M) = I+ D)~ M, (M, +1)|M,+1) ; T |M,)=[JJ+1)- M, (M, -1)|M, 1)




Two spin angular momentum vectors which commute, such as I and S, can be
combined together to form a resultant

F=I+S (12)

The quantum states of the coupled system are now eigenstates of F? and F,. F? has
the value F(F + 1), while the total spin F may have one of several values. The spins
I and S give a series of multiplets corresponding to the F values I+ S,(I+ S —1) - --
[I — S|. Each multiplet consists of (2F + 1) sublevels with different F, values. Often
one needs to know the value of I'S (nuclear hyperfine splitting) or L-S (spin orbit
splitting) in a coupled state. This is found easily:

I-S=14[I+8S)—I2—82]=4[F*—I? - §2]
= 3[F(F + 1) — I + 1) — (S + D)]. (13)

The spin wave functions for two or more electrons are a little more complicated.
The total spin angular momentum vector for two electrons is

S=8S,+S, (14)

and its components obey the commutation relations (1). The squared spin S? =
(S; +S;)? again takes the value S(S + 1) but now the quantum number S may be
either O (singlet state) or 1 (triplet state) while the resolved component S, has the
possible values 1, 0, —1. There are four possible spin wave functions

0(10(1 Sz = 1
o B2,81%; 0
B1B. -1

and we wish to find the wave functions of the singlet and triplet states.
The function a;a, has S, =1 and is clearly a triplet. We check this by using

Eq. (4).

S%o,a, = [S™ST + S,(S; + D]a,a, (15)
But S*a 0, = (S7 + SF)a 2, =0, and so we find
S%u,a, = S,(S, + Daya, = S(S + Daya, (16)

To find a triplet wave function with S, =0 we use (11) and apply the operator

(1/2)s".
—= STy, = LZ (a1B; + B122) 17

7T

A further shift down gives f, 8, to complete the set. The only remaining spin function

must be a singlet state (1 /ﬁ)(a,ﬂz — B.a,), since it has S, = 0 and S? = 0. To verify
this we use (4) again

Sz(“lﬂz — B12;) = STSH (2,82 — B1a3) ‘ (18)
S+(°‘1B2 — Biap) = (a0, — yt;) =0 (19)

Similar methods can be used to obtain spin functions for three electrons (or nuclei)
which are listed in Section 4.4.4.



PROBLEMS

1. Construct the matrices S, S,, S, for spins S =1, §=13/2, and S=2.
2. Find the eigenfunctions of S, and S, for a spin .S = 1.

3. A magnetic field H makes an angle  with the z axis. Find the stationary states for an
electron spin S = 1/2. Calculate the probabilities that the electron will be found in the states
[ or |BD.

4. A sodium atom (I = 3/2, S = 1/2) in zero field has the Hamiltonian # = al-S. Find the
energy levels.

SUGGESTIONS FOR FURTHER READING

Landau and Lifshitz: Chapter 4.
Eyring, Walter, and Kimball: Chapter 9.

APPENDIX D: TENSORS AND VECTORS

The type of tensor we are concerned with in this book is called a Cartesian tensor.
Just as a vector -

S=_584+8,j+ Sk 1)

has various components S,, S,, S, which are referred to a set of rectangular axes
1, j, k, so does a Cartesian tensor. But a tensor T has 9 components

T, xx Txy T, x.
T=|T,, T,, T, 2)
T, zx sz T, zz,

which can be arranged to form a 3 x 3 matrix. By multiplying the matrix of T on the
left with a row vector S one obtains a new row vector S:T. Similarly matrix multi-
plication on the right by a column vector I yields a new column vector T-I. Finally it
is possible to form a scalar S-T-I by the madtrix multiplication

[Sm Sy’ Sz] Txx Txy sz Ix
T, T, T,.||I (3)

yx

sz sz Tzz Iz

Note that S-T-I may also be regarded as the scalar product of two vectors; either
(S:-T) with I, or equally S with (T-I). In any case the product written in full is

SxTxxIx + SxTxny +c SyTszz + SszzIz (4)
or
Z Si’Tika (l’ k= X, ¥, Z) (5)
i .
By analogy with Eq. (1) one sometimes uses the notation

T =iT, i +il,j+ kILk ©)



and then the scalar products i-T-i, i-T-j and so on are just the components of the
tensor. For example, it follows from the orthogonality of the unit vectors i, j, k that

iT-j = (DT J) + G- DTG0 + - - (-K)T.(k-j) (M
=0+T,,+ -0
=T, ®)
There are various important types of tensor. Symmetric tensors have a sym-
metric matrix; T,, = T,, etc. Antisymmetric tensors have T,, = —T,, and zeros on
the diagonal. Diagonal tensors, as the name suggests, have the form
t;, 0 O
0 1, O 9
0 0 1

1, t,, t3 are called the principal values of the tensor, and if T is diagonal in a certain
rectangular coordinate system, the coordinate axes are known as the principal axes.

The diagonal sum of a tensor is an important quantity called the trace of the
tensor denoted by the symbol Tr{ }.

TH{T} = T\, + T,, + T,,) (10)
Finally a most useful tensor is the unit tensor 1, or (ii + jj + kk) whose matrix is
the unit matrix
1 00
[0 1 0] (11
0 01

The main reason for using tensor notation is that it is extremely easy to change
from one set of rectangular axes to another. The orientation of an axis system a, f8, y
with respect to another set x, y, z is specified by 9 direction cosines ,,, /s, - - which

form a matrix
L=, ly I,
Ly lgy 1, (12)

Ly Ly 1

az yz

Each component is the scalar product of one of the unit vectors i, j, k with one of the
new unit vectors a, b, ¢; /,, for instance is equal to (a‘-k), and is the same as /,,. The
rows (or columns) of (12) form a set of orthogonal normalized vectors.
To calculate the components of vectors and tensors in the new coordinate system
we first note that
a=(ai)i+ (aj)j+ (a‘kk

=L+ Lj+ 1k (13)
Hence the o component of a vector S is
S, =(S-a) =[S, + 1,,S, + .S, (14)
Similarly the «f component of a tensor T becomes
T,=aT-b

= (laxi + lay.i + lazk)'T.(ilxﬂ + jlyﬂ + klzﬂ)
= laxTxxlxﬂ + laxTxylyﬁ + - (15)



The new matrix of T can be written as the product of (2) with L and its transpose:

lax lﬂ x l b24 Txx Txy sz lxa lxﬁ lxy

lay lﬁy ! vy Tyx Tyy- Tyz lya lyﬂ lyv (16)
laz lﬂz lyz sz sz Tzz lza lzﬁ lzy

The transformation (16) has two important properties. First it follows from the

orthogonality of the direction cosines that the trace of T is unchanged.

(Taa + Tﬂﬂ + Tw) . (Txx + Tyy + Tzz) (17)

Second, if the tensor is reaf and symmetric it is always possible to find a new axis
system for which a, B, y are principal axes and the tensor is diagonal. The pro-
cedure for finding principal axes is identical with the procedure which was described
in Appendix A for finding the eigenvectors of an operator. For instance, to find the
direction of the o axis and the corresponding principal value ¢; we look for solutions of
the equations

(Txx - tl) Txy sz lxa
T,, (T,—t) T, ||L|=0 (18)
sz sz (Tzz - tl) lza

In connection with these transformations it is noteworthy that the scalar quantity
S-T-1is invariant, and so is the.unit tensor (11). Conversely the only tensor which is
invariant under all rotations of axes is the unit tensor 1, or a multiple of it.

Finally let us consider the average behavior relative to space axes x,y,z of a
tensor which belongs to a rapidly rotating molecule in solution. In the molecular axis
system ofy the components T, T, etc. are fixed, but the space values T,,, T,,, . ..
fluctuate in a random manner. The time average of T is an invariant tensor, so it
must be a multiple of 1. Also the trace of T is invariant, so the time average consists
of a diagonal tensor with

tl = t2 = t3 = %(Txx + Tyy + ’Tzz) (19)

Clearly a tensor with zero trace vanishes on the average.

PROBLEMS

1. Write out the vectors ST and T-I in matrix notation.

2. When, if ever, is S-T-Iequal to I-T-S?

3. Write out in full the orthogonality conditions for the rows and columns of (12). Hence
prove (17).

4. The tensor T is diagonal in the axis system )é, y, z. The unit vectors a, b, ¢ are obtained
by rotating the i, j, k axes through an angle 6 in the xy plane. Find the components of T
in the «, B, y system.

5. Do Problem 4 again, interchanging the axis systems.

6. The e.s.r. spectrum of the CH(COOH) . radical was studied in a single crystal to determine
the hyperfine tensor of the CH proton. The components (in Mc/s) referred to crystal axes are

=53 —17 -—-17
[—-7 —82 —15]

—-17 —-15 —-41



Find the principal values and the principal directions.
7. The g tensor of the CH,(COOH) radical in the same crystal as Problem 6 is

2.0033 —0.0005 0.0000
—0.0005 2.0028 0.0010
0.0000 0.0010 2.0033

Find its principal values. Are the principal directions the same as in Problem 6? Comment
on the result.
SUGGESTIONS FOR FURTHER READING

Morse and Feshbach: Methods of Theoretical Physics, Part 1. (New York: McGraw-Hill
Book Co., Inc., 1953.) Pages 54-107.





