Class 1.1 Introduction; Atomic Structure I

Monday, Aug. 30 CHEM 462 T. Hughbanks

About grades

• Grading criteria for this course are outlined in the syllabus and on the course web site.

- Aside from being ~25% of the total grade, homeworks should be of some use for studying for exams.
- I will try to place some past exam(s) on the web in the period preceding an exam.
- I'll try to answer just about any question [except maybe, "Is this going to be on an exam?" :)].

What's "hard" about this course?

- Success depends on recall and integration of material from previous courses; You will be expected to use things you learned in general, organic and some extent, physical chemistry.
- Success depends on ability to <u>think</u> about and <u>apply</u> previous material not just memorization and regurgitation for exams.

CHEM 462

Prerequisite material

• To remind you of some things that you should have seen in earlier courses, I have posted 6 files, prereq#.pdf (# -1-6), in the 'Handouts' section of the course web site:

http://www.chem.tamu.edu/rgroup/hughb anks/courses/462/chem462.html • Download these now – and look them over

before we get to the relevant sections in this course!

Announcements, Reading

- Text: Shriver & Atkins, 3rd ed.: "Inorganic Chemistry"
- We're starting with Chapter 1 for two or three lectures
- We will review things you should have seen in Freshman Chem., and again (in more detail) in P. Chem.
- 1st homework set is posted: http://www.chem.tamu.edu/rgroup/hughbanks/c ourses/462/chem462.html
- Lecture notes, handouts, old exams, etc. posted in the same place. OHEM

Inorganic vs. Organic Chem.

- Involves few elements forming mostly covalent or polar covalent bonds
- Mostly <u>molecular</u> solids (except polymers)
- Usually air-stable
- Commonly soluble in nonpolar solvents
- Distillable, crystallizable • Bonding involves s & p
- electrons
- <u>All</u> the elements, involving all modes of bonding
- Ionic, extended-network (metallic/covalent), & molecular solids
- All possibilities concerning stability wrt air or water
- Widely ranging
- solubilities

462

The Elements

- ~ 107 of them
- Most are metals: solids, electrical conductors, good thermal conductors, sometimes with high mechanical strength and ductility. Structures: ccp, hcp, bcc, and other types
- ~ 22 nonmetals (As, Sb, Te, ... ?)
- At ambient temp.: 11 gases, 2 liquids (Br, Hg), [+ Cs (m.p. 28.5 °C) & Ga (m.p. 29.8 °C)]

Abundances in Earth's Crust

Order of occurrence (weight % abundances): O(45.5) > Si(25.7) > Al(8.3) > Fe(6.2) > Ca(4.66) > Mg(2.76) > Na(2.27) > K(1.84) All others < 3% combined (including beloved Carbon and Hydrogen!)
SiO₂ and silicates are constituents of most rocks

and many "ores" of other metallic elements.
All these elements are the principal constituents of most minerals (also important: P, S, Mn, Cr, Ti, Cu).

Orbitals & Quantum Numbers

- Quantum numbers: n, l, and m_l .
- "principal," "azimuthal," and "magnetic" quantum numbers.
- A set of these 3 defines an orbital.
- Recall that an orbital is a kind of standing wave that is the probability *amplitude* describing an electron's position. (|Ψ|² gives the probability density.)

CHEM 462

CHEM 462

Quantum Numbers

- *n* principal quantum number
 influences energy and size of the orbital
 n = 1, 2, 3, ...
- *l* azimuthal quantum number
 shape of orbital (mainly)
 - $\ l = 0, \, 1, \, 2, \, ..., \, (n\text{-}1)$
- *m*₁ magnetic quantum number - orientation of orbital (mainly)

 $-m_l = -l, ..., 0, ... + l$

п	1	m_l	# of orbitals	type of orbitals
1	0	0	1	1s
2	0	0	1	2s
	1	-1,0,+1	3	2p
3	0	0	1	3s
	1	-1,0,+1	3	3р
	2	-2,-1, 0,+1,+2	5	3d

The meaning of Ψ

- Orbitals are wavefunctions, defined in mathematical terms.
- Physical interpretation?
- |Ψ|² tells us the <u>probability</u> of finding the electron at some point in space.
- "Pictures" of orbital shapes (without "signs") are actually graphs of $|\Psi|^2$.

From orbitals to atoms - configurations

• Each orbital can "hold" 2 electrons, provided they have opposite spins.

- Build up atoms by filling orbitals with appropriate # of electrons.
- Start at low energy, work toward high energy.
- "Electron configurations"

