

\qquad

\square Calorimetry: Constant Pressure
 * Reactions run in an open container will occur at constant P.
 * Calorimetry done at constant pressure will measure heat: q_{p}.
 * How does this relate to $\Delta \mathrm{U}$, etc.?

* It would be nice to have a state function which is directly related to q_{p} :

$$
\Delta(?)=q_{\mathrm{p}}
$$

* We could then measure this function by calorimetry at constant pressure.
* Call this function enthalpy, H , defined by:

$$
\mathrm{H}=\mathrm{U}+\mathrm{PV}
$$

Enthalpy

* Enthalpy: $\mathrm{H}=\mathrm{U}+\mathrm{PV}$
** U, P, V all state functions, so H must also be a state function.
* $\Delta \mathrm{H}=q_{\mathrm{p}}$?
- Do some algebra, assuming that P is constant:
** $\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta(\mathrm{PV})$
$=\Delta U+P \Delta V$

$$
\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{P} \Delta \mathrm{~V} \quad \text { (const. } \mathrm{P} \text {) }
$$

* $\mathrm{P} \Delta \mathrm{V}$ term due to expansion or compression.
* For solids \& liquids, $\mathrm{P} \Delta \mathrm{V}$ is small.
Therefore, $\Delta \mathrm{H} \approx \Delta \mathrm{U}$ for condensed phase systems.
**For systems involving gases, $\Delta \mathrm{H}$ and $\Delta \mathrm{U}$ may differ considerably
\qquad

\square	$\Delta \mathrm{H}$ for Physical Processes
$\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{P} \Delta \mathrm{V} \quad$ (const. P)	
* If heat must be put in to the system to bring about	
a physical change, then $\Delta \mathrm{H}>0$ for that process.	
* For changes involving only condensed phases	
(solids \& liquids), P $\Delta \mathrm{V}$ contribution is small.	
$\Delta \mathrm{H}$ for physical processes can be qualitatively understood by thinking about intermolecular forces.	

Again, Heat Capacities...

* For one mole of an ideal gas: $\mathrm{U}=3 / 2$ RT
* We've seen that $\Delta \mathrm{U}=q_{\mathrm{v}}$, therefore
since $C_{V}=\frac{q_{V}}{\Delta T}, C_{V}=\frac{\Delta U}{\Delta T}\left(=\frac{d U}{d T}\right.$ in the limit $)$

$$
C_{V}=\frac{3}{2} R \text { for an ideal gas }
$$

* We've seen that $\Delta \mathrm{H}=q_{\mathrm{P}}$, and $\Delta \mathrm{H}=\Delta(\mathrm{U}+\mathrm{PV})$
since $C_{P}=\frac{q_{P}}{\Delta T}, C_{P}=\frac{\Delta H}{\Delta T}\left(=\frac{d H}{d T}\right.$ in the limit $)$
$C_{P}=\frac{3}{2} R+\frac{d(P V)}{d T}=\frac{3}{2} R+\frac{d(R T)}{d T}=\frac{5}{2} R$ for an ideal gas

Enthalpy \& Chemistry

* Many reactions occur at constant P , so $\Delta \mathrm{H}$ is a useful quantity.

23. $\Delta \mathrm{H}<0 \rightarrow$ heat is released, so reaction is exothermic

* $\Delta \mathrm{H}>0 \rightarrow$ heat is absorbed, so reaction is endothermic
** $\Delta \mathrm{H}$ is related to the amount of energy we might get out of a reaction.

H vs. $\Delta \mathrm{H}$

** We always talk about $\Delta \mathrm{H}$, never H itself.
(Same is true for $\mathrm{U} \& \Delta \mathrm{U}$)
Why?
粦 H is an energy, so we need some reference point. "Absolute energy" is not readily defined.

Reaction Enthalpies

* Enthalpies don’t just apply to changes in physical state, but to reactions too. Example:
$\mathrm{Fe}(s)+2 \mathrm{~S}(s) \longrightarrow \mathrm{FeS}_{2}(s) \quad \Delta \mathrm{H}^{\circ}=-178.2 \mathrm{~kJ}$
* If these chemicals constitute the "system", then when the reaction occurs, 178.2 kJ of heat will be released into the surroundings if 1.0 mol of FeS_{2} is formed.
* Note: this says nothing about the rate of the reaction or the conditions under which it would be practical to carry it out.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Tabulating \& Using $\Delta \mathrm{H}$
 ** Exhaustive tabulation of $\Delta \mathrm{H}$'s (for all possible reactions) is not feasible.
 ** Exploit the fact that $\Delta \mathrm{H}$ is a state function to get maximum useful information from a more reasonable amount of data.
 \&"'Standard Enthalpy of Formation," $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$

\qquad
\qquad
\qquad
\qquad
\qquad

Formation Reactions

$\begin{gathered}\text { Elements in } \\ \text { standard states }\end{gathered} \longrightarrow \begin{gathered}1 \text { mole of } \\ \text { compound }\end{gathered}$
$\begin{gathered}\mathrm{C}_{(\mathrm{s}, \text { graphite) }}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{4(\mathrm{~g})} \\ 1 / 2 \mathrm{~N}_{2(\mathrm{~g})}+3 / 2 \mathrm{H}_{2(\mathrm{~g})}\end{gathered} \rightarrow \mathrm{NH}_{3(\mathrm{~g})}$

* Always one mole of product, so often need to use fractional coefficients.
** Many such reactions can not actually be carried out. (But values can be found indirectly \& tabulated.)

Using $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\prime}{ }^{\text {S }}$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ * $\Delta \mathrm{H}=$? * Since H is a state function, we can create any \# of intermediate states. * Use $\Delta \mathrm{H}$ for these steps to find the $\Delta \mathrm{H}$ we want.

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \\
\Delta \mathrm{H}_{1} \mid \\
" A \text { " } \xrightarrow{\Delta \mathrm{H}_{2}} \text { " } \mathrm{B}^{\prime \prime} \xrightarrow{\Delta \mathrm{H}_{3}}{ }^{〔} \mathrm{\Delta H} \mathrm{H}_{4}
\end{gathered}
$$

* Because H is a state function:
$\Delta \mathrm{H}_{\mathrm{rxn}}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}+\Delta \mathrm{H}_{4}$
* $\Delta \mathrm{H}_{1}, \Delta \mathrm{H}_{2}$, etc. refer to the individual steps
\qquad
\qquad
\qquad
\qquad

** For any reaction, we can write:
$\Delta \mathrm{H}_{\mathrm{rxn}}=\Sigma \mathrm{n} \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ (products) $-\Sigma \mathrm{n} \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ (reactants)
* n's are the stoichiometric coefficients from the balanced chemical equation.
* This lets us find $\Delta \mathrm{H}$ for any reaction from a table of $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ} \mathrm{s}$.

Another Problem - Hess's Law

* Acetylene torches are used in welding. Chemical reaction involved is:
$\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+5 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
* Find $\Delta \mathrm{H}^{\circ}$ for this reaction.
** Estimate the maximum temperature which could be obtained in an acetylene flame.
* Some useful data are on the next slide.

Thermochemical (Born-Haber) Cycle \qquad

Values for
S_{M} : sublimation Enthalpy of Metal (298 K)
108
$\mathrm{D}_{\mathrm{x}_{2}}$: dissociation Energy of X_{2} bond $(298 \mathrm{~K})$
I(M) : Ionization Enthalpy of Metal M 496
E_{X} : electron attachment Enthalpy of X atom 349
ΔH_{L} : Enthalpy for separation of salt to ions
theory

Thermochemical (Born-Haber) Cycle \qquad

Experiment (Born-Haber cycle):

$\Delta H_{f}=S_{M}+(1 / 2) D_{X_{2}}+I(M)-E_{M}-\Delta H_{L}$
for NaCl , measured value of $\Delta \mathrm{H}_{\mathrm{f}}$ is $-411 \mathrm{~kJ} / \mathrm{mol}$
$-411=108+(242 / 2)+496-349-\Delta H_{L}$
$\Rightarrow \Delta H_{L}=787\left(-2\right.$ for C_{p} correction $)=785 \mathrm{~kJ} / \mathrm{mol}$

\qquad
\qquad
\qquad
\qquad

Bond Enthalpies and Reactions

* We can measure the strength and length of chemical bonds. (some easily, some with great difficulty)
** Energy of a particular type of bond (carbon hydrogen, etc.) approximately (but not exactly) the same in different molecules.
** This is because bonds are often mainly localized and because orbitals used to make bonds are similar in different molecules.

* Average bond enthalpies are tabulated.
** We can use these to estimate the enthalpy change for any chemical reaction for which bond enthalpies are known.
* Decide whether the reaction was likely to succeed, evaluate possible fuels, etc.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Some Bond Enthalpies (kJ/mol)

* Diatomic molecules (actual values)

H-H $432.0 \quad \mathrm{O}=\mathrm{O} 493.6$
$\mathrm{C} \equiv \mathrm{O} \quad 1071$

* Other bonds (avg. values)
$\mathrm{C}-\mathrm{C} 348 \mathrm{C}=\mathrm{C} 612 \quad \mathrm{C} \equiv \mathrm{C} 837$
C-H 412 C=N $615 \quad \mathrm{C} \equiv \mathrm{N} 890$
$\mathrm{N}-\mathrm{H} 388 \mathrm{~N}=\mathrm{O} 630$
O—H 463

Thermodynamics \& Chemistry

Study of the energy changes associated with chemical or physical processes.

* Chemical applications of principles you will study in physics \& engineering
- reaction energy, fuels, etc.
* Goal - to be able to predict whether or not a given reaction can occur, using simple tabulated data.

