Graphene on Ru(0001): Evidence for two graphene band structures

Khabibulakh Katsiev,1 Yanoslav Losovyj,2 Zhihao Zhou,3 Elio Vescoyo,3 Li Liu,1 Peter A. Dowben,4 and D. Wayne Goodman1,*

1Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA
2The J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, Louisiana 70806, USA
3National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973, USA
4Department of Physics and Astronomy, University of Nebraska, Theodore Jorgensen Hall, 855 North 16th Street, P.O. Box 880299, Lincoln, Nebraska 68588-0299, USA

(Received 23 September 2011; revised manuscript received 3 January 2012; published 3 May 2012)

Graphene grown on single-crystal substrates such as Ru(0001) is extremely ordered,1–10 but characterized by two chemically different species.2–9 This has usually been ascribed to a rumpling of the graphene overlayer, thus there would be patches of graphene strongly hybridized with the substrate and regions where such hybridization is weak;7,10,11 In the regions with a strong interaction there is charge transfer and the possible opening of a band gap.7,10 If the rumpling occurs without grain boundaries, one might suspect a continuum graphene-substrate hybridization from strong (close proximity) to weak (separation from the substrate). Either a continuum of graphenes or small patches of graphene in the strong and weak substrate hybridization regime would lead to a smearing of the valence-band structure.12 If the graphene in one chemical regime or the other is large enough in spatial extent, then wave-vector conservation in the plane of the graphene remains preserved with very high fidelity, and two distinct band structures may emerge, as is suggested by spatially resolved scanning tunneling microscope (STM) spectroscopy studies.3 But strong interactions with the substrate can also lift the chemical degeneracy of the A and B graphene sites, reducing the symmetry to C3 and opening up a band gap in the graphene.13,14

Splitting of the graphene bands for graphene on Ru(0001) could also arise from several effects. The splitting could be a result of spin-orbit effects, as is observed for paramagnetic metals surfaces.15–18 For graphene on a metal substrate, however, there is a loss of inversion symmetry along the surface normal as well as in the plane of the film, therefore the spin-orbit coupling splitting for graphene should be very small (∼10 μeV or less).16–23 While the substrate can alter the spin-orbit coupling significantly,24 this is unlikely to be the case for graphene,25 because of the low Z of carbon.

Other possibilities for splitting of the graphene valence band include a chemical shift between the top layer of graphene and the layer in intimate contact with the substrate, as has been proposed for the “split” valence-band structure of graphene on Ru(0001) (Ref. 25) and SiC.26 The moiré resulting from the overlaid graphene and the Ru(0001) surface also leads to a supercell that can give rise to Dirac cone replicas, as seen for graphene Ru(0001) (Ref. 10) and Ir(111).25

II. EXPERIMENT

The STM experiments were carried out in the ultrahigh vacuum (UHV) chamber with the base pressure ∼1 × 10−10 Torr. The chamber was equipped with room-temperature scanning tunneling microscope (STM) Omicron STM-1, a cylindrical mirror energy analyzer for Auger electron spectroscopy (AES), low-energy electron diffraction (LEED) optics, as detailed elsewhere.28 All STM images were acquired in the constant-current mode with an electrochemically etched W tip. The bias voltages are reported with reference to the sample. The angular resolved photoemission spectroscopy (ARPES) studies were acquired at the USUA undulator spherical grating monochromator (SGM) beamline at the National Synchrotron Light Source (NSLS)29,30 and at the 3 m NIM (normal incidence monochromator) beamline at the CAMD (Center for Advanced Microstructures and Devices, LSU). The angle-resolved hemispherical electron energy analyzers EA125, Omicron GmbH and a Scienta200 were used for these experiments.30 The light was incident at 45–75° from the sample normal and the photon energy was 22 and 45 eV for the data presented, unless stated otherwise, although data were collected at a variety of photon energies. The typical overall instrumental resolution was approximately 80 meV.

The Ru(0001) substrate was cleaned by cycles of Ar ion sputtering, annealing in 1.0 × 10−7 Torr of O2 at ∼1100 K, and flashing to 1800 K in vacuum. The surface cleanliness was monitored by AES (not shown), LEED [Fig. 1(d)], and, where available, STM [Fig. 1(a)]. Single-layer graphene was formed by first exposing a clean (metallic) Ru(0001) sample to ethylene or propylene with a pressure of 1 × 10−7 Torr at room temperature, followed by annealing the sample to 1300 K, and then slowly cooling to 1000 K. This process was repeated several times in order to synthesize graphene that uniformly covered the Ru(0001) substrate. The quality of the graphene overlayer was monitored by LEED [Fig. 1(e)]. Due to the lattice mismatch between graphene and the surface of Ru(0001), a moiré structure was formed, as shown in the low-energy...
electron diffraction of Fig. 1(e), with a superstructure lattice constant of \(\sim 3.0 \text{ nm}^2\) as shown in Fig. 1(b). It is noteworthy, however, that there is no evidence of a reduction of symmetry due to an inequivalence in the graphene \(A\) and \(B\) sites as noted elsewhere for graphene on other substrates.10,31

Graphene on the oxidized Ru(0001) surface was prepared by first growing single-layer graphene, then oxidizing the Ru surface by heating the sample to \(\sim 700 \text{ K}\) in \(1 \times 10^{-7}\) Torr of oxygen for 5 min. This procedure results in the formation of the Ru(0001)(2 \(\times\) 2) surface oxide structure [as seen in the LEED of Fig. 1(f)] with strong suppression of the moiré as seen in the LEED of the graphene overlayer. As seen in the STM image of Fig. 1(c), the graphene overlayer is less corrugated with no evidence of a moiré structure.

III. RESULTS AND DISCUSSION

The band structure of monolayer graphene on Ru(0001), with well-defined bands along \(\bar{\Gamma}-\bar{K}\), is shown in Figs. 2(b) and 2(c). The fact that the graphene is not in registry with the substrate suggests that the graphene band structure is decoupled from the substrate and that the Brillouin zone edge along \(\bar{\Gamma}-\bar{K}\) occurs at \(1.7 \text{ Å}^{-1}\) (as seen in Fig. 2), consistent with graphene, not Ru(0001).11 The band structure exhibits a clear splitting of the bands associated with the graphene overlayer, as seen along both \(\bar{\Gamma}-\bar{K}\), as illustrated in Fig. 2. This splitting of the graphene bands occurs not only in the region of the Fermi level, but also well away from the Fermi level along \(\bar{\Gamma}-\bar{K}\), as seen in Fig. 2. Such a splitting of bands over such large regions of \(k\) space tends to exclude an origin that is related to spin-orbit splitting, since such surface or overlayer Rashba interactions are expected to be wave vector dependent and the two spin-split bands must be degenerate at \(k = 0\) (i.e., at \(\bar{\Gamma}\)). Furthermore, the band splitting for graphene on Ru(0001) even exceeds the spin-orbit splitting of more than 500 meV reported for the hydrogen-covered W(110) surface states near \(E_F\).32,33 It is noteworthy that this magnitude of splitting is not seen for graphene on gold on Ru(0001) (Ref. 34) where one might expect spin-orbit coupling because of interactions with the higher \(Z\) of gold.15 The splitting also cannot be attributed to “shadow” bands due to the moiré multiple diffraction effects reported elsewhere for graphene on Ru(0001) (Ref. 10 and Ir(111)),36 because the splitting is seen well away from the Fermi level with significant intensity in both components. Thus, with the exclusion of spin-orbit splitting and moiré related shadow bands, the observed splitting of the band structure suggests two chemically distinct states of graphene.

FIG. 2. (Color) Angle-resolved ultraviolet photoemission spectroscopy (ARUPS) spectra [(a) was taken at 22 eV photon energy, (b–e) at 45 eV photon energy along the \(\bar{\Gamma}-\bar{K}\) direction] of: (a) clean Ru (0001); (b) graphene/Ru(0001); (c) high-resolution map of the graphene band region indicated by the white dashed rectangle in (b); (d) graphene/oxidized Ru(0001); and (e) high-resolution map of the graphene band region indicated by the white dashed rectangle in (d).
It can be argued that the observed splitting of the π band is due to the formation of multilayer graphene, where the first monolayer of graphene, that couples strongly with the Ru substrate, and patches or/and overlayers of free-standing double- or triple-layered graphene, that couple less strongly, form two distinct bands. This is not the case in experiments, because the well-defined Dirac cone at the Γ point, indicative of free-standing, multilayer graphene or multilayer graphene on Ru(0001), is absent. As shown in the Supplemental Material, the photoemission intensity is illustrative of an incomplete Dirac cone and asymmetric about the \bar{K} point near the Fermi level (see Fig. S1 in the Supplemental Material), completely consistent with prior studies of monolayer graphene on Ru(0001). Only for bilayer graphene on Ru(0001) does the π band of graphene extend to the \bar{K} point. Furthermore here the measured work function of $\phi = 4.2$ eV for the graphene/Ru(0001) system and in a good agreement with that reported in the literature for a single-layer graphene on Ru. For a graphene bilayer on SiC, the splitting of the graphene band structure, resulting from the chemical inequivalence of two graphene layers with respect to charge and electrostatic potential, leads to a splitting of the band structure that becomes less distinct at smaller wave vectors, toward the surface Brillouin zone center, at increasing binding energies away from the Fermi level.

As mentioned above, oxygen exposure to graphene on Ru(0001) yields a graphene layer on an oxygen layer chemisorbed on Ru(0001). This should change the graphene Ru(0001) interaction significantly. Graphene on Ru(0001) should acquire charge of about $0.05e$ per carbon atom, while graphene on chemisorbed oxygen on Ru(0001) should be slightly electron deficient. As seen in a comparison of Fig. 2(b) with Fig. 2(c), there are distinct changes in the band structure. Key among these changes observed in the graphene overlayer band structure is not just a shift in the binding energies of the various graphene bands but also a splitting of the graphene bands. There is a decrease in the splitting of the graphene bands in the region along Γ–\bar{K}, from ~800 to ~400 meV, with insertion of a chemisorbed oxygen interlayer between the Ru(0001) and the graphene. This correlates with the morphological changes in the graphene overlayer on Ru(0001) observed with STM subsequent to oxygen exposure. After the oxygen exposure, the corrugation of the graphene overlayer becomes significantly smaller compared to that of graphene on metallic Ru(0001), with a peak-to-valley corrugation estimated to be 0.1 and 0.03 nm for the graphene on metallic and oxidized Ru(0001), respectively.

The monolayer graphene band-structure data indicate that the splitting of the graphene band structure is characteristic of a difference in the chemical potential “felt” by the graphene overlayer, and not an effect of spin-orbit splitting. The splitting of the graphene band structure observed here for graphene on Ru(0001) is larger than the splitting of graphene bilayers. Some 800 meV instead of the expected 400 meV. Although the graphene monolayer on Ru(0001) is observed to separate into two chemically different species, other factors also play a role, among which is that the rumpling of the monolayer renders patches of the graphene layer inequivalent with respect to charge, as well inequivalent with respect to the electrostatic potential and in terms of the substrate screening the photoemission final state. These inequivalencies all contribute to an increase in the apparent splitting of the graphene band structure well beyond that expected by charge displacement, and these inequivalencies are reduced by the insertion of oxygen between the graphene and the substrate.

Recent work suggests that the screening of a dipole adsorbate on graphene is very different from that of other very good conductors, even considering the differences in carrier densities in graphene (due to the dimensionality restrictions) with those of metal surfaces. This can lead to the binding energy shifts seen in photoemission. This means that binding energy shifts in the valence-band spectra are significantly larger for screened and unscreened graphene, due to the rumpling of the graphene sheet. These apparent shifts in the graphene spectra should be much larger than those observed with other adsorbates on Ru(0001). Furthermore, there is a large body of theory indicating that such binding energy shifts in the valence band, as a result of the differences in the electrostatic potential and adsorbate graphene hybridization (as well as the substrate screening the photoemission final state), are not only possible, but indeed likely. Of course distinguishing between initial state effects such as charge transfer to the graphene and final state effects due to screening in the proximity of a metal substrate, for example, is difficult.

If chemisorbed oxygen is then placed between the graphene and the Ru(0001), the surface of the substrate is no longer fully metallic. A graphene layer on a chemisorbed oxygen layer should, in principle, be more weakly coupled to the substrate. This weaker interaction would cause a shift of the graphene band structure, a loss of the moiré in the LEED, and a decrease in the graphene atomic corrugation, as noted in prior work. Perhaps more importantly, the expected, but not previously reported, splitting of the graphene bands should decrease, as is observed [Figs. 2(d) and 2(e)]. In this context, the hybridization with the substrate must be reexamined. If the two different graphene band structures are to be explained to be a direct consequence of the rumpling or corrugation of the graphene such that certain areas are in close proximity to the metal substrate and other areas are displaced from the substrate, certain requirements must be met. The graphene in one of these chemical regimes must be sufficiently spatially extensive such that wave-vector conservation in the plane of the graphene remains preserved with sufficient fidelity that two distinct band structures may emerge, as is suggested by spatially resolved STM studies. Any smoothly undulating potential (with no large areas of chemical equivalence) would not, by itself, explain the two distinct band structures.
Because these are band-structure effects consistent with the band structure of graphene, the two chemical states are not the result of short-range effects, such as a broken graphene A/B carbon symmetry due to a strong interaction with the Ru(0001) metal substrate. The latter is not evident in STM. Any initial chemical state differences between the A/B sites would be very much suppressed along the $\Gamma-K$ high symmetry direction, as differences between the A/B graphene sites would reduce the surface symmetry to C_{3v}.13 In C_{3v}, the K high symmetry point reflects the k-space point with no mirror inversion symmetry. The absence of registry with the substrate and the C_{6v} symmetry of the LEED and the STM (Fig. 1) exclude a chemical inequivalence of the graphene A and B sites, though this might exist on an oxide surface.13 The potential differences due to the rumpling of graphene on Ru(0001) are seen not just in the spatially resolved electronic structure,4 the Xe 5$p_{1/2}$ binding energies,11 and the C 1s core-level spectra,37 but in the formation of two distinct graphene band structures. The two chemical regimes for graphene on Ru(0001) are large enough in spatial extent that wave-vector conservation in the plane of the graphene remains preserved with very high fidelity along the $\Gamma-K$ high symmetry direction. This is consistent with the two distinct core levels measured for single-layer graphene on Ru(0001),37 with a core-level splitting of 600 meV, similar to the splitting of the two chemically inequivalent graphene valence-band structures presented here.

ACKNOWLEDGMENTS

This material is based upon work supported as part of the Center for Atomic-Level Catalyst Design, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001058; more specifically, supporting the efforts of K.K., Z.Z., L.L., and D.W.G. The NSLS is supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76CH00016. The J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices is supported by the Louisiana Board of Regents. The work at UNL was supported by the Semiconductor Research Corporation, Division of Nanomanufacturing Sciences administered by B. Boyanov and B. Havemann under Task ID 2123.001. The authors acknowledge helpful conversations with J. Kelber, W.-N. Mei, and L. Kong.

1deceased. Emails to Dr. Goodman (goodman@mail.chem.tamu.edu) will be read.

31L. Kong et al., J. Phys. Chem. \textbf{114}, 21618 (2010).

35. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.85.195405 for more details on the graphene band structure near the surface Brillouin zone K point are provided.