Chapter 23

Introduction to the Transition Elements: Ligand Field Theory

Bonding in Transition Metals
- Crystal Field Theory (CFT)
- Ligand Field Theory (LFT)
- Molecular Orbital Theory (MO)

The power behind any theory is how well it explains properties and the spectroscopic behavior of compounds and, in the case of transition metals complexes, magnetic behavior.

Ligand Field Theory (LFT) is much simpler than MO theory (a little more sophisticated than CFT), but it is a very useful theory.
Transition Elements / Compounds

- “d block” elements/compounds

- Primarily strong, hard metals in their elemental forms that conduct electricity and heat very well.

- They form colored compounds (varies with ox. state) due to electronic transitions in the visible region from one d orbital to another (small energy gap)

- They are often paramagnetic (i.e. they contain unpaired electron(s))

Various bonding theories can explain the properties of T.M. (transition metal) compounds.

First, show (without derivation) the M.O. approach
Bonding in Transition Metal Complexes: Two Considerations

A. **Geometry**

ML₆ \(O_h \) (octahedral)
ML₄ \(T_d \ vs \ D_{4h} \)
(tetrahedral vs. square planar)

B. **Ligand Type**

\(\pi \) – acceptors
\(\pi \) – donors
\(\sigma \) – donors

many ligands are a combination of donor types, but the “pure” donor diagrams can be considered

\(\pi \) – acceptors
CO, NO⁺, CNR, CN⁻

\[\text{Filled empty} \]
\[\text{d-orbitals} \rightarrow \pi^* \]
\[\pi - \text{donors} \quad \text{halides (} X^- = \text{Cl, Br, I}) \]
\[\text{NH}_2^- \text{ (amide)} \]
\[\text{NR}_2^- \]
\[\text{O}_2^- \]
\[\text{OR}^-, \text{SR}^- \]

\[\sigma - \text{donors} \quad \text{H}^+, \text{NH}_3 \]

Molecular Orbital Treatment

Without going into the group theory considerations of how to set up symmetry adapted atomic orbitals on the metals and the ligands. First, recall MO diagram for CO.

![MO Diagram for CO](image-url)
How would one go about trying to build a molecular orbital diagram for a coordination complex?

- Assume central atom has s,p, d orbitals in valence shell = 9 orbitals
- Assume each ligand atom, L, has s and p orbitals
 \[4 \times n \text{ ligands} = 4n \text{ orbitals} \]

Octahedral \(ML_6 \)

\[
\begin{align*}
\text{metal} & : 9 \text{ orbitals} \\
\text{ligands} & : 4 \times 6 = 24 \text{ orbitals}
\end{align*}
\]

Total number of orbitals in the “basis set” is 33.

Thirty – three orbitals sounds like a lot!

Actually, it is not as bad as it sounds, because the orbitals can be grouped according to special rules dictated by the shape of the molecules

\[\rightarrow \text{symmetry adapted linear combinations (SALC’S)} \]
Q. What are we trying to accomplish?

A. An understanding of how d orbitals are affected by bringing “n” ligands around the metal center.

\[
ML_n \quad n = 6 \quad \text{Octahedral} \quad \}\{ \quad \text{basic} \\
\quad n = 4 \quad \text{Tetrahedral} \quad \}\{ \quad \text{geometry}
\]

The d orbitals on M change energy according to the types of orbitals on L (σ, π, π*)
σ – Donor Only Case

Metal d s p
(5) (1) (3)
Energy-wise d < s < p

highest occupied are d
as s and p are empty for M^{n+}

Ligands s, p_z, \[p_x, p_y \)
along M-L
these form
axis so used in \(\pi \) - bonds
σ - bonding

∴ on the ligands, if only σ – bonding is possible for an ML_6 compound:

Metal d, s, p = 9 orbitals
Ligand s + p_z \rightarrow sp

6 x \(\bigcirc \) orbitals
we use these to make SALC’s
symmetry adapted linear combinations
Six SALC

The Ligand Group Orbitals for :L donating a lone pair to a M-L σ bond look like this:

Now, we need to match these symmetries with the same symmetries from the metal valence orbitals. These will be the only combinations to produce overlap!
The metal orbitals are grouped by symmetry labels just like the ligand SALC’S

\[s \rightarrow A_{1g} \quad \text{(one orbital)} \]

\[p \rightarrow T_{1u} \quad \text{(three orbitals so triply degenerate)} \]

In an octahedral environment, the five d orbitals split:

- **E\(_g\)** (two orbitals so doubly degenerate) \(d_{x^2-y^2}, d_{z^2} \)
- **T\(_{2g}\)** (three orbitals so triply degenerate) \(d_{xy}, d_{xz}, d_{yz} \)

since \(d < s < p \) in energy, the M.O. diagram arranges them

```
   T_{2g}   T_{1u}
    \downarrow   \uparrow
     E_g     A_{1g}
```

Figure 23-8 The six metal orbitals, with σ symmetry and the ligand group orbitals (l) that overlap properly with these metal orbitals to form σ-type MO's in an ML complex. Each ligand group orbital (l) with subscripts to designate the matching d orbital is shown adjacent to the metal orbital with which it overlaps. The resulting MO's are listed in Table 23-4. The \(L_{d} \) set is doubly degenerate and the \(T_{2g} \) set is triple degenerate.
Oₜ M.O. Diagram \(\sigma \)-Donor \([\text{Co(NH}_3]_6\)]^{3+}

Metal orbitals

- \(T_{1u} \)
- \(4p \)
- \(A_{1g} \)
- \(4s \)
- \(E_g \)
- \(T_{2g} \)
- \(3d \)

Molecular orbitals

- \(t_{1u} (\sigma^*) \)
- \(a_{1g} (\sigma^*) \)
- \(e_g (\sigma^*) \)
- \(\Delta_o \)
- \(t_{2g} \)
- \(\) Non-bonding

Ligand orbitals

- \(\) Important part of the MO diagram \(\Delta_o \) changes with ligand

Note

- Order of coulomb energies for metal & ligand orbitals:
 - \(\sigma(L) < nd < (n+1)s < (n+1)p \)

Additional Information

- \(6 \text{ NH}_3 \) sigma bonds
- \(12e^- \) in \(6 \text{ NH}_3 \) ligands
\[\pi - \text{Donor Case} \quad :\text{Cl}: \]

you have \(\sigma \) and \(\pi \) bonding

there are lone pairs that can make both types of bonds as opposed to :NH\(_3\) which only has a lone pair for \(\sigma - \) bonding

(sp hybrid)
\[
L: \quad s, p_z, \quad \{p_x, p_y\}
\]
\(\sigma - \) bonds \(\pi - \) bonds

for \(ML_6 \):

M: (same as before)
9 orbitals \(A_{1g}, T_{1u}, T_{2g} E_g \)
\[s \quad p \quad d \]

L: 6 \(\sigma \) orbitals \((A_{1g}, T_{1u}, E_g) \)
6 x 2 \((p_x, p_y) = 12 \pi \) orbitals
\[(T_{1g}, T_{2g}, T_{1u}, T_{2u}) \]
What are ligands that use π – bonds?

(π – donors like halides for example)

Group orbital made up of combinations of p_x and p_z orbitals on four of the atoms

Note:
There are two more sets based on $M \, d_{yz}$ and $M \, d_{xy}$.
O_h M.O. Diagram π – Donor [CoCl₆]⁵⁻

(Don’t need to sketch the whole diagram)

<table>
<thead>
<tr>
<th>Metal Orbitals</th>
<th>Molecular Orbitals</th>
<th>Ligand Orbitals</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁u</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A₁g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E₉</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₂g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Focus on this part only

Both sets of d orbitals are driven ↑ in energy due to lower lying ligand orbitals

Δ₀

e₉ (σ*)

t₂g (π*)

A₁g

T₁g, T₂g

T₁u, T₂u

π-orbitals

pₓ, pᵧ

E₉

σ-orbital

p₂

E₉

σ-orbital
O_h M.O. Diagram π – acceptor

CO, NO$^+$, CNR, CN$^-$

Mo(CO)$_6$

Metal Orbitals
(only consider the d orbitals)

Molecular Orbitals

- $t_{2g} (\pi^*)$
- $e_g (\sigma^* M-L)$

Ligand Orbitals

- T_{1g}, T_{2g}
- T_{1u}, T_{2u}
- π^* orbitals on CO
 (6 x 2 each)
- A_{1g} σ orbitals on CO
- T_{1u}
- E_g (6 x 1 each)

Δ_0

$e_g (\sigma M-L)$

take a look at the CO MO diagram
Bottom Line and this **ALL I WANT YOU TO HAVE TO BE RESPONSIBLE FOR KNOWING** (you don’t have to know how to derive the previous results): M.O. Theory predicts different energy separations for the d orbitals (which are where the outer electrons reside on the metal) **depending on the type of ligand**

1. Octahedral, ML_6, symmetry (geometry) dictates the two sets of orbitals

extent and type of M-L bonding dictates the separation!

To summarize O_h M.O. Splittings

- Δ_o antibonding
- Δ_o non-bonding
- π^* both are antibonding
- π-donor smallest separation
- σ-donor intermediate separation
- π-acceptor largest separation between sets of d-orbitals

$eg (\sigma^*)$ M-L bonding

$t_{2g} (\pi)$

$t_{2g} (n.b.)$ non-bonding

$t_{2g} (\pi^*)$ non-bonding

Δ_o antibonding
These trends reflect the energies of the orbitals from the ligands and their symmetries. Also, the strength of their interaction is going to affect the Δ_0 separation strongly-field (bigger splitting) versus weak-field ligands (smaller splitting) and the metal dependence.

Metal dependence

Lower field (smaller splittings)

$\text{Mn}^{2+} < \text{Ni}^{2+} < \text{Co}^{2+} < \text{Fe}^{2+} < \text{V}^{2+} < \text{Fe}^{3+} < \text{Cr}^{3+} < \text{V}^{3+} < \text{Co}^{3+} < \text{Mn}^{4+} < \text{Mo}^{3+} < \text{Rh}^{3+} < \text{Pd}^{4+} < \text{Ir}^{3+} < \text{Re}^{4+} < \text{Pt}^{4+}$

Stronger Field

(larger splittings)

Ligand dependence

Spectrochemical Series

π – acceptors

$\text{NO}^+ > \text{CO, PF}_3 > \text{CN}^- > \text{NO}_2 > \text{NH}_3 > \text{H}_2\text{O} > \text{OH}^- > \text{F}^- > \text{S}^{2-} > \text{Cl}^- > \text{Br}^- > \text{I}^-$

π – donors (weak)
More simple theories then M.O. theory:

Crystal Field Theory and Ligand Field Theory

(CFT and LFT)

CFT assumes that bonds between the metal atom and the ligands are totally ionic – in other words, point charges

LFT is a modification of CFT that allows for the effects of covalent character in the bonds, but the two theories are used in essentially the same manner.

CFT/LFT theories are especially well-adapted to explaining the spectroscopic properties of transition metal complexes and accounting for magnetic properties.
Group theory tells us that there are two different groups of orbitals in

\[\text{O}_h \rightarrow T_{2g}, \quad E_g \leftarrow \text{symmetry labels} \]

\[\text{(octahedral)} \quad d_{xy}, d_{yz}, d_{xz}, d_{x^2-y^2}, d_{z^2} \]

\[\text{T}_d \rightarrow T_2, \quad E \leftarrow \text{symmetry labels} \]

\[\text{(tetrahedral)} \quad \text{(same as above without g)} \]
Just as in O_h, T_d has different amount of d orbital splittings with different types of ligands - the trend is the same as in O_h

σ donors, π – donors, π – acceptors

What is the relationship between Δ_σ (10 Dq) and Δ_t?

another way to write the energy separation

$\Delta_t = \frac{4}{9} \Delta_\sigma$ for similar metal cations/ligands
But how was the relative ordering decided without the arguments of Molecular Orbital Theory?

With the cartesian coordinate system selected for an O_h symmetry molecule, the charges are directed along the x, y and z axes where the $d_{x^2-y^2}$ and the d_{z^2} orbital point.

Since electrons in these orbitals would be expected to repel the negative charges of the ligands, these orbitals are raised in energy from a spherically distributed set of charges. The other orbitals point in between the negative charges of the ligands.

- spherical field of 6 charges
- O_h
- 10Dq or Δ_o
- d_{xy}, d_{xz}, d_{yz} (t_{2g}) (stabilized)
- $d_{x^2-y^2}, d_{z^2}$ (e_{2g}) (destabilized)

lower case letters for orbital
In T_d symmetry the coordinate system does not directly point along any of the orbitals, but if one considers the drawing below:

It should be possible to convince oneself that the d_{xy} orbital will have more contact with the negative charges than the $d_{x^2-y^2}$ orbital (no charges point at the $d_{x^2-y^2}$ orbital but the d_{xy} orbital is between the axes). Likewise d_{z^2} (along z) does not contact the negative charges.

\[
\begin{align*}
\{d_{x^2-y^2}, d_{z^2}\} & \quad \text{e set (stabilized)} \\
\{d_{xz}\} & \quad \text{t}_2 \text{ set (destabilized)} \\
\{d_{xy}, d_{yz}\} &
\end{align*}
\]
What happens to the octahedral orbitals (t\textsubscript{2g} and e\textsubscript{g} sets) when we distort the geometry?

Why? Because z isn’t as close to electrons on ligands which would be repulsive, so orbitals with a z component will drop in energy and the others will have to pick up the slack so they bond more strongly (go up)
d – orbital splitting diagrams

In the limit of going from \(\text{ML}_6 \) to \(\text{ML}_4 \):

(Octahedral to square planar)

\[
\begin{align*}
\text{e}_g & \quad \Delta_0 \quad \text{t}_{2g} \\
& \quad \downarrow \quad \downarrow \\
& \quad \text{d}_{x^2-y^2} \quad \text{d}_{xy} \quad \text{d}_{z^2} \\
& \quad \downarrow \quad \downarrow \\
& \quad \text{d}_{xz} \quad \text{d}_{yz} \\
\text{ML}_6 & \quad \text{ML}_4
\end{align*}
\]
Sketches showing the unique ground-state electron configurations for d orbitals in octahedral fields with the d configurations d^1, d^2, d^3, d^8, d^9, and d^{10}.

adapted from Fig 23-13 on page 514.
<table>
<thead>
<tr>
<th>High-spin state</th>
<th>Low-spin state</th>
<th>High-spin state</th>
<th>Low-spin state</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\begin{array}{c} \text{d}^4 \ \begin{array}{c} \text{t}_{2g}^3 \text{e}_g^1 \ E = -3/5 \Delta_o + P_E \end{array} \end{array}$</td>
<td>$\begin{array}{c} \text{t}_{2g}^4 \ E = -8/5 \Delta_o + P_E \end{array}$</td>
<td>$\begin{array}{c} \text{t}_{2g}^5 \text{e}_g^2 \ E = -2 \Delta_o + 2P_E \end{array}$</td>
<td>$\begin{array}{c} \text{t}_{2g}^6 \text{e}_g^1 \ E = -9/5 \Delta_o + P_E \end{array}$</td>
</tr>
</tbody>
</table>

adapted from figure 23-14 on page 515.

Diagrams showing the two possibilities (high spin and low spin) for ground-state electron configurations of d^4, d^5, d^6 and d^7 ions in octahedral fields. Also shown is the notation for writing out the configurations and expressions for their energies, derived as explained in the text.
Use Fe(III) as an example:

This shows the energies of the d orbitals in various fields

10 Dq changes in weak versus strong fields

The center of the energy levels ("Bary center") remains the same as you split orbitals by imposing symmetry

$10Dq = \Delta_o = \Delta E$
High – spin Fe(III) example $[\text{Fe}(\text{H}_2\text{O})_6]^{3+}$
Low – spin Fe(III) example $[\text{Fe}($CN$)_6]^{3-}$

What is the difference in the energies of the electrons in $[\text{Fe}(\text{H}_2\text{O})_6]^{3+}$ and $[\text{Fe}($CN$)_6]^{3-}$ → called **Crystal Field Splitting Energy (CFSE)**

$$
\begin{array}{c|c|c}
\text{t}_2^3 & \text{e}_g^2 & \text{versus} \\
\hline
3x(-2/5\Delta_o) & 5x(-2/5\Delta_o) \\
+ 2x(3/5\Delta_o) & + 0x(3/5\Delta_o) \\
0 & -2\Delta_o \\
\end{array}
$$

This is why the cyanide complex $[\text{Fe}($CN$)_6]^{3-}$ is so much more stable than the water complex $[\text{Fe}(\text{H}_2\text{O})_6]^{3+}$

CN^- has a much stronger effect than H_2O to split the d orbitals (bigger separation between lower and higher
set) – that is why one complex \([Fe(H_2O)_6]^{3+}\) will fill all the orbitals with one electron before pairing (high spin) and the other pairs up because of the overwhelming favorable CFSE. \([Fe(CN)_6]^{3-}\) is the greatest achievement of CFT!

Generalize this concept:
in \(O_h\) \(t_{2g}\) electrons are \(-2/5\Delta_0\) each
\(e_g\) electrons are \(+3/5\Delta_0\) each

\(\therefore\) you can calculate CFSE (LFSE) for any \(d^n\) configuration.