Interactions of Metal—Metal-Bonded Antitumor Active Complexes with DNA Fragments and DNA

HELEN T. CHIFOTIDES AND KIM R. DUNBAR*
Department of Chemistry, Texas A&M University,
College Station, Texas 77843
Received September 1, 2004

ABSTRACT
This Account summarizes the DNA binding properties of anticancer active dinuclear Rh, Re, and Ru compounds. The combined results of NMR spectroscopy, X-ray crystallography, and various biochemical tools provide incontrovertible evidence that dinuclear complexes are favorably poised to bind to purine nucleobases, DNA fragments, and double-stranded DNA. Moreover, direct DNA photocleavage in vitro is effected by dirhodium compounds in the presence of electron acceptors in solution or directly attached to the dirhodium core. This research has provided valuable insight in the interactions of dinuclear compounds with DNA, knowledge that is an excellent backdrop for rational design of promising dinuclear drugs.

Introduction
The medicinal properties of inorganic compounds are well-known, dating to ancient times, with the earliest recognition being traced back to the Egyptians who used copper to sterilize water in 3000 B.C. Presently, metal compounds that exhibit antiarthritic, antibacterial, anticancer, antidepressant, and anti-hypertensive properties are in routine clinical use. Interest in metal anticancer compounds stems from the extraordinary effectiveness of cisplatin (cis-[Pt(NH3)2Cl2] or cis-DDP)1–3 and related complexes for the treatment of ovarian, testicular, head, neck, esophageal, and lung carcinomas, with a cure rate greater than 90% in the case of testicular cancer. Extensive investigations of this potent antitumor agent have established DNA as its primary intracellular target. The intras-
oxygen-metalated complex \(\text{Rh}_2(\mu-\text{O}_2\text{CCH}_3)_3(\mu-\text{O}_2\text{CCH}_3)_2[D\text{ToIF}]_2(\text{H}_2\text{O})_2 \) (Chart 1, structure e; \(D\text{ToIF}^- = N,N'-p\text{-tolylformamidinate} \)) with two robust formamidine and two labile trifluoroacetate bridging groups represents a favorable compromise between antitumor activity and toxic side effects. The latter was evaluated for efficacy against Yoshida ascites and T8 sarcomas and was found to exhibit considerably reduced toxicity with comparable antitumor activity to cisplatin.23 The homoleptic paddlewheels compound \(\text{Rh}_2(D\text{ToIF})_4 \) exhibits no appreciable biological activity,24 presumably due to steric factors that preclude access of biological targets to the \(ax \) and \(eq \) sites of the dirhodium core. Other strategies to improve dirhodium antitumor activity include the use of water-soluble ligands such as carbohydrate and cyclophosphamide derivatives,25 adducts attached to carrier ligands such as isonicotinic acid,26 and cycloextrin encapsulated compounds; the latter allow for localized and controlled release of the drug with fewer side effects.27

Dirhenium. Dirhenium compounds constitute a promising class of inorganic molecules for clinical development, given the noted lack of Re toxicity compared to other “heavy” metals (no LD\(_{50}\) has been reported).5 The compounds \(\text{Re}_2(\mu-\text{O}_2\text{CCH}_3)_2\text{Br}_4(\text{H}_2\text{O})_2 \) (Chart 1, structure f) and the water-soluble \(\text{Re}_2(\mu-\text{O}_2\text{CCH}_3)_4(\text{SO}_4)_2 \) with quadruple Re-Re bonds, exhibit considerable antitumor activity against B-16 melanoma and sarcoma 180, respectively. Although no additional biological testings of dirhenium compounds have been reported since the studies by Eastland and co-workers,5,6 it is postulated that they inhibit DNA replication and protein synthesis similarly to dirhodium complexes.

Diruthenium. Diruthenium compounds have been much less investigated than their dirhodium counterparts vis-à-vis antitumor properties, but their biological mode of action is thought to be comparable. Mixed-valent carboxylato complexes of the type \(\text{Ru}_2(\mu-\text{O}_2\text{CR})_4\text{Cl} \) (R = Me, Et) (Chart 1, structure g) were found to be moderately active against P388 lymphocytic leukemia cell lines.4 The in vitro antineoplastic activity of diruthenium compounds is greatly enhanced, however, for the highly water-soluble series \(\text{M}_3[\text{Ru}_2(\mu-\text{O}_2\text{CR})_4(\text{H}_2\text{O})_2]_2\cdot4\text{H}_2\text{O} \), \(\text{R} = m\text{-} \) or \(p\text{-} \)C\(_6\)H\(_4\text{-SO}_3^- \) and \(\text{M} = \text{Na}^+ \) or \(\text{K}^+ \) (Chart 1, structure h),7 a fact that reinforces the importance of solubility in increasing the biological activity of these potential drugs.

Diplatinum. The study of diplatinum complexes containing \(\text{cis-}[\text{Pt}(\text{NH}_3)_2]^{2+} \) entities originated from the high activity of “platinum blues” against the ascites S-180 tumor system and their low toxicity, but there appears to be no consensus regarding the nature of their interactions with DNA.28

Reactions of Dinuclear Rhodium Complexes with Nitrogen Donor Chelates

In an early effort to elucidate the possible binding modes of DNA to the dirhodium core, efforts in our laboratories were aimed at studying dirhodium interactions with bidentate nitrogen chelates, for example, bpy, which may
be considered mimics of adjacent DNA bases. Although
the analogy was not fully appreciated until much later,
we reasoned that if bpy could enter the coordination
sphere of “lantern-type” structures, it should be possible
for DNA bases to behave likewise. Indeed, the adduct
Rh$_2$(µ-O$_2$CCH$_3$)$_3$(η^2-O$_2$CCH$_3$)(bpy)$_2$$_{29,30}$ (Figure 1), as well as
the related species [Rh$_2$(µ-O$_2$CCH$_3$)$_2$(bpy)(NCCH$_3$)$_4$](BF$_4$)$_2$
and Rh$_2$(µ-O$_2$CCF$_3$)$_2$(η^1-O$_2$CCF$_3$)$_2$(bpy)(THF)(H$_2$O) (Figure
2)$_{30}$ exhibit structures with one chelating bpy molecule
in ax-eq and eq-eq positions, respectively. By piecing
together the data obtained from these collective studies, a
mechanism for how nitrogen-containing chelates enter
the coordination sphere of the dirhodium core was
proposed (Scheme 1). The reaction involves an initial
nucleophilic attack of the base at an ax site of the dimetal
unit to afford the axially bound monodentate adduct a,
followed by formation of a chelate ring by attack of a
second donor atom at an eq site (b; ax-eq adducts) and
conversion to the final eq-eq adducts c.30 The rearrange-
ment from ax to eq positions is a key feature of this
chemistry and a major factor in dictating the outcome of
purine reactions with dirhodium units.

**Interactions with Nucleobases and Nucleos(t)-
ides**

Axial Nucleobases. A perusal of the literature reveals that,
unlike cisplatin, dirhodium compounds bind strongly to
polyadenylic acids and adenine nucleosides.$^{8,9,31-33}$
These DNA binding preferences are considered to be
related to the fact that dirhodium compounds are well-
known to react via trans substitution of ax ligands located
at opposite ends of the dimer (Chart 1, structure a). Axial
interactions between adenine (via position N7; Chart 2,
structure a) and the dirhodium core are stabilized by
formation of hydrogen bonds between the purine exocy-
clic NH$_2$(6) amino group and the carboxylate oxygen atom
of the dirhodium unit, as evidenced by the X-ray structural
studies of Rh$_2$(µ-O$_2$CCH$_3$)$_4$(1-MeAdo)$_2$$_{33}$ (Figure 3) and
$trans$-[Rh$_2$(µ-O$_2$CCH$_3$)$_2$(µ-HNCOCF$_3$)$_2$(9-MeAdoH)$_2$].
(NO$_3$)$_2$.$_{34}$ By comparison, the absence of guanine (Chart
2, structure b) ax adducts, when the dirhodium unit is
supported solely by carboxylate groups, is attributed to
electrostatic repulsions between the purine site O6 and
the carboxylate oxygen atoms. When at least two of the
carboxylate groups of the complex are replaced by lig-
ands with hydrogen-bonding donor moieties, however, $\alpha\beta$ binding of guanine via N7 as in $\text{trans-}[\text{Rh}_2(\mu_2-O_2CCH_3)_2(\mu_2-NHCOCF}_3)_2(9$-$\text{EtGuaH})_2]$ (Figure 4) and $\text{Rh}_2(\mu_2-NHCOCF}_3)_4(d\text{Guo})_2$, is favored. 34 The argument of unfavorable $\alpha\beta$ binding of guanine to dirhodium carboxylate units is supported by the fact that although the guanine analogue, theophylline, binds axially to $\text{Rh}_2(\mu_2-O_2CCH_3)_4$ via N9, in $[\text{Rh}_2(\text{HNCOCH}_3)_4(\text{theophylline})_2]$-$\text{NO}_3$, the NH hydrogen-donor groups on the acetamidate moieties favor binding via position N7. 35 Axial binding of cytosine via N3 (Chart 2, structure c) to $\text{Rh}_2(\text{HNCOCH}_3)_4$ units is stabilized by formation of hydrogen bonds between the exocyclic NH2(4), O2 sites, and the tetraamidate cage.36 Similarly, in diplatinum(III,III)$-$guanine $\alpha\beta$ adducts, the guanine O6 and the NH3 groups of the dimetal unit engage in hydrogen bonding interactions (Figure 5).37$^-$39 Axial binding of adenine and adenosine via N9/N3 and N7, respectively, has been proposed for their adducts with tetraacetatodiruthenium(II,III), but the compounds have not been structurally characterized.40

Equatorial 9-ethylguanine (N7/O6). Early claims in the literature that dirhodium compounds do not react with guanine32 and polyguanylic acids8 were largely based on the lack of perceptible color change upon reaction of guanine with the dirhodium core, in contrast to the immediate color change (from blue-green to pink-violet) upon $\alpha\beta$ binding of adenine and its derivatives to dirhodium carboxylate compounds. Findings in our laboratories have shown that adenine and guanine bases bind to the dirhodium core in an alternative manner that involves displacement of eq bridging groups. The crystal structure determinations of H-T $\text{cis-}[\text{Rh}_2(\mu_2-O_2CCH_3)_2(9$-$\text{EtGua})_2]$(MeOH)$_2$ (Figure 6),43 H-T $\text{cis-}[\text{Rh}_2(\mu_2-O_2CCF}_3)_2(9$-$\text{EtGua})_2]$(Me$_2$CO)$_2$(CF$_3$CO)$_2$ (Figure 7),41 and H-H $\text{cis-}[\text{Rh}_2(\mu_2-O_2CCF}_3)_2(9$-$\text{EtGuaH})_2]$(Me$_2$CO)(H$_2$O))(BF$_4$)$_2$ (Figure 8)42 revealed the presence of unprecedented bridging guanine groups spanning the dirhodium unit via N7/O6 in a cis disposition and H-H or head-to-tail (H-T)43 orientations. These X-ray studies provided the first hard evidence for guanine O6 participation in binding to dimetal units. The 9$-$EtGuaH structures are intriguing in another respect, namely, that position N1 can be protonated or deprotonated, depending on the nature of the leaving group. In H-T $\text{cis-}[\text{Rh}_2(\mu_2-O_2CCF}_3)_2(9$-$\text{EtGua})_2]$(MeOH)$_2$, the purine is deprotonated at N1, that is, the enolate form of guanine (9$-$EtGua$^{-}$) is stabilized41 (Scheme 2), whereas in H-T $\text{cis-}[\text{Rh}_2(\mu_2-O_2CCF}_3)_2(9$-$\text{EtGuaH})_2]$(Me$_2$CO)$_2$)(CF$_3$CO)$_2$, the purine N1 site is protonated,43 in accord with the lower basicity of CF$_3$CO$_2$$^{-}$ ($pK_b \approx 13.5$) compared to CH$_3$CO$_2$$^{-}$ ($pK_b \approx 9.2$). The substantial increase in the acidity of
N1–H for the aforementioned compounds (pH-dependent 1H and 13C NMR titrations afford a value $pK_a \approx 5.7$ compared to 8.5 for N7-bound only and 9.5 for the unbound purine) is attributed to the bidentate N7/O6 coordination of the base. The reaction of Rh$_2$(ð-Ó2CCF$_3$)$_2$(9-EtGuaH)$_2$-(Me$_2$CO)$_2$(CH$_3$SO$_4$) with guanosine-5′-monophosphate (GMP) follows similar trends, which consist in the formation of two isomers (H–H and H–T) with the guanine unit spanning the Rh–Rh bond in a bridging fashion via N7/O6 positions.

The pronounced electronic effects on the O6/N1 guanine sites, involved in base recognition and hydrogen bonding in duplex DNA and the shifting of the pK_a values to the physiological pH range, suggest that metal binding severely impairs normal Watson–Crick pairing, which bears directly on metal mutagenicity and cell death.

Bridging 9-EtGuaH groups coordinated via N7/O6 positions have also been observed in H–H cis-[Rh$_2$(ð-Ó2CCF$_3$)$_2$(9-EtGuaH)$_2$]-[bpy](CH$_3$CN)$_6$]$_2$BF$_4$ as well as in H–T cis-[Rh$_2$(ð-Ó2CCF$_3$)$_2$-(Me$_2$CO)$_2$](9-EtGuaH)$_2$-([bpy](9-EtGuaH)$_2$]-[bpy]-[CH$_3$SO$_4$]-[H$_2$O]-[BF$_4$]).

Moreover, 1H NMR studies performed on reaction solutions of 9-EtGuaH with Re$_2$(ð-Ó2CR)$_2$Br$_4$ (R = Me, Et, Pr) support the loss of two cis carboxylate groups and coordination of the purine via positions N7/O6. The fact that dinuclear compounds with metal–metal bonds ranging from single to quadruple and M–M distances between 2.2 and 2.5 Å form stable bis-bridging 9-EtGuaH complexes argues strongly for the prevalence of this binding mode. The crystal structure determination of cis-[Rh$_2$(ð-Ó2CCF$_3$)$_2$(9-EtGuaH)]-[(bpy)(9-EtGuaH)-H$_2$O]-[CH$_3$SO$_4$]-[CH$_3$SO$_4$] (Figure 10), however, revealed that 9-EtGuaH may also bind in a monodentate fashion via N7 to a single rhodium center at an eq position in the presence of a chelating agent, for example, bpy, which occupies eq sites of the other rhodium center.

Bridging 9-Ethyladenine. Our findings from adenine nucleobase reactions with dimetal units clearly demonstrate that the former are not restricted to binding solely to ax positions, as previously thought. In an effort to avoid the insoluble polymers that plague dirhodium/carboxylate reactions with adenine, two carboxylate ligands were replaced with DTolF$^-$ groups. Reactions of [Rh$_2$(ð-Ó2CF$_3$)$_2$(9-EtAdeH)$_2$-][CH$_3$CN]-[BF$_4$]$_2$ with 9-EtAdeH (Chart 2, structure a) afford H–T cis-[Rh$_2$(ð-Ó2CF$_3$)$_2$(9-EtAdeH)$_2$]-[NCCH$_3$]$_2$]-[BF$_4$]$_2$ (Figure 11) with two 9-EtAdeH rings bridging at eq sites via N7/N6. This binding mode of adenine with dimetal
units was originally observed in the dimolybdenum analogue H-T cis-[Mo₂(μ-O₂CCHF₂)₂(9-EtAdeH)₂](BF₄)₂ and complements the results observed for 9-EtGuaH (vide supra). As indicated by variable temperature ¹H NMR spectra, ⁴⁷ 9-EtAdeH is present in the rare imino form, as a result of the metal-induced internal proton transfer from NH₂(6) to N₁ (Scheme 3). The imino form of adenine results in alteration of the hydrogen bonding behavior of the base and an increase in the acidity of N₁-H, the ultimate result of which is nucleobase mispairing and cell mutations. ⁴⁶ In the case of H-H cis-[Re₂(μ-O₂CC₂H₅)₂(9-EtAde)₂]Cl₂ (Figure 12), ⁵² the adenine bases are bridging via positions N₁/N₆ and NH₂(6) is deprotonated; metal binding to these sites, normally involved in Watson–Crick hydrogen bonding, may have important biological consequences. ⁴⁶

Bridging Pyrimidine Rings. In the diplatinum(III,III) compound H-T cis-[Pt₂(NH₃)₂(1-MeCyt)₂(9-EtGuaH)₂](ClO₄)₄ (Figure 5) with H-T bridging cytosine moieties (Chart 2, structure c), binding takes place via N₃/N₄ with site NH₂(4) being deprotonated. ⁴⁷ ３⁸ Two cytosinato fragments acting as bridging ligands via N₃/N₄ are proposed in the paramagnetic compound Rh₂(DTolF)₂(Cyt)₂(O₂CCF₃), but no X-ray structure has been reported. ²⁴

Dirhodium Adducts with Dinucleotides. Armed with the knowledge obtained from our studies of dirhodium unit interactions with the basic building blocks of DNA, we extended our work to the chemistry of small DNA fragments. It was reasoned that the 90° “bite” angle displayed by the d(GpG)–cisplatin “chelate” is well-suited to accommodate two cis eq positions of one metal atom in a dirhodium unit, despite the different geometries of the two metal atoms. The reactions of Rh₂(μ-O₂CCH₃)₄ with the dinucleotides d(GpG) and d(pGpG) were probed by NMR spectroscopy. ⁴⁴ ⁴⁵ One-dimensional ¹H and ¹³C NMR studies of Rh₂(μ-O₂CCH₃)₂(d(GpG)) (X = H) and Rh₂(μ-O₂CCH₃)₂(d(pGpG)) (X = HPO₃⁻) (Chart 3) revealed that both compounds contain dinucleotides bridging the dirhodium core via N₇/O₆ with considerable increase in the acidity of the purine sites N₁-H (pKₐ ≈ 5.7), as in the case of 9-EtGuaH. Intense H₈/H₈ ROE (rotating-frame nuclear Overhauser effect) cross-peaks in the 2D ROESY NMR spectra (Figure 13) indicate a H-H arrangement of the guanine bases for both adducts. ⁴⁴ ⁴⁵ The Rh₂(μ-O₂CCH₃)₂(d(GpG)) adduct exhibits two major right-
handed conformers HH1R (75%) and HH2R (25%), which differ in the relative canting of the two bases, whereas in Rh2(μ-O2CCH3)2{d(pGpG)}45,46 the steric effect of the terminal 5′-phosphate group results in stabilization of only one left-handed HH1L conformer as in cisplatin-DNA adducts. Detailed characterization of Rh2(μ-O2CCH3)2{d(pGpG)} and Rh2(μ-O2CCH3)2{d(pGpG)} by 2D NMR spectroscopy reveals notable structural features that resemble those of cis-[Pt(NH3)2{d(pGpG)}]; the latter involve repuckering of the 5′-G sugar rings to type N, retention of type S conformation for the 3′-G sugar rings and anti orientation with respect to the glycosyl bonds.44,45 Superposition of the low-energy Rh2(μ-O2CCH3)2{d(pGpG)} conformer, generated by simulated annealing calculations, and the crystallographically determined cis-[Pt(NH3)2{d(pGpG)}] (light blue). N7/O6 bridges that span the Rh−Rh bond. The rigid steric demands of the tethered guanine bases bound to the square planar platinum atom in cis-[Pt(NH3)2{d(pGpG)}] are also satisfied in metal−DNA interactions and lay a solid foundation for exploring similar structural motifs in related systems. Indeed, NMR spectroscopic data for Rh2(DTolF)2{d(GpG)} reveal that binding also occurs via N7/O6 of the guanine bases in a H−H fashion and that both sugar rings are in an anti orientation with respect to the glycosyl bonds.53 Contrary to cis-[Pt(NH3)2{d(pGpG)}] and Rh2(μ-O2CCH3)2{d(pGpG)}, in Rh2(DTolF)2{d(GpG)} both sugar rings are of type N, a fact that implies possible conformational restriction in the adduct. The NMR studies of Rh2(DTolF)2{d(ApA)} (Chart 4) indicate that metal binding occurs at eq sites via N7/N6 with a H−H arrangement of the adenine bases.53 The latter are present in the rare imino form, as suggested by variable-temperature 1H NMR spectra.53 Metal N7/N6 binding leads to an increase in the acidity of the adenine N1−H site and a shift of its pKa to values near physiological pH, with apparent biological implications.46

Dirhodium Adducts with Single-Stranded (ss) DNA Oligonucleotides.13,14 In an attempt to address the issue of versatility and stability of dirhodium−DNA adducts, a comprehensive mass spectrometry study was undertaken. Dirhodium reactions with single-stranded oligonucleotides containing dipurine sites point to the following relative order of reactivity, which correlates with the lability of the leaving groups: cis-[Pt(NH3)2(H2O)2]2+ > Rh2(μ-O2CCF3)4 > cis-[Pt(NH3)2Cl2]2+ ≈ cis-[Rh2(μ-O2CCH3)2]2+.

FIGURE 13. Aromatic region of the 2D ROESY NMR spectrum of Rh2(μ-O2CCH3)2{d(pGpG)} in D2O displaying the H8/H8 ROE cross-peaks of the two guanine bases in a H-H arrangement.
of the dirhodium unit in vivo. The study involved form species with one or no acetate bridging groups. nate with tetramers, whereas longer oligonucleotides also data, bis-acetate oligonucleotide dirhodium adducts domi-
deetecting the 14CO2 produced during the respiration of excreted 14CO2 accounts for inhibited (ESI) mass spectrometries, indicate that the enzymes are desorption ionization (MALDI) and electrospray ionization products, which were detected by matrix-assisted laser supports the conclusion that purine rather than pyrimi-
dition studies by the DNA exonucleases phosphodiesterase DNA oligonucleotides were subjected to enzymatic diges-
tions proceed with substitution of two acetate bridges with dinucleotides (vide supra), clearly indicate that the reac-
ted products, which were detected by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometries, indicate that the enzymes are inhibited at or near the dipurine sites. This observation supports the conclusion that purine rather than pyrimi-

\((\text{NCCH}_3)_3[\text{BF}_4]_2 > \text{Rh}_2(\mu-\text{O}_2\text{CCH}_3)_4\) As indicated by the data, bis-acetate oligonucleotide dirhodium adducts dominate with tetramers, whereas longer oligonucleotides also form species with one or no acetate bridging groups.

At this point, it is pertinent to address the conclusions of an early study that brought into question the integrity of the dirhodium unit in vivo. The study involved detecting the 14CO2 produced during the respiration of mice that had been treated with a specific quantity of \(\text{Rh}_2(\mu-\text{O}_2\text{CCH}_3)_4\). Although it was concluded, for a reason that is not clear to us, that the results point to total decomposition of the \(\text{Rh}_2\) unit, actually the amount of excreted 14CO2 accounts for \(\sim 50\%\) of the administered Rh, which is more compatible with the conclusion that two acetate ligands remain bound to the dirhodium core in vivo. Our mass spectrometry results, as well as the dirhodium tetraacetate studies with nucleobases and dinucleotides (vide supra), clearly indicate that the reactions proceed with substitution of two acetate bridges with the other two remaining intact. Moreover, the noted kinetic stabilities of the solvated cations \([\text{Rh}_2(\text{NCCH}_3)_3]^{4+}\) and \([\text{Rh}_2(\text{H}_2\text{O})_3]^{4+}\) are an excellent indication that the dirhodium core remains intact, even in the absence of carboxylate bridging groups.

The “gentle” nature of the electrospray ionization process permitted the observation of initial dirhodium–DNA adducts and reaction intermediates; the data imply that DNA purine sites bind to dirhodium compounds by establishing weak \(\alpha\) interactions followed by rearrange-
mendment to more stable \(\epsilon\) positions. These findings corroborate the proposed mechanism for adduct formation of nitrogen donor chelating molecules (vide supra).

The adducts formed between dirhodium units and DNA oligonucleotides were subjected to enzymatic digestion studies by the DNA exonucleases phosphodiesterase I (3′–5′) and phosphodiesterase II (5′–3′). The digestion products, which were detected by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometries, indicate that the enzymes are inhibited \(at\) or \(near\) the dipurine sites. This observation supports the conclusion that purine rather than pyrimi-

![Interstrand cross-links](image)

FIGURE 15. Denaturing PAGE (5%) of reactions between \(\text{Rh}_2(\mu-\text{O}_2\text{CCH}_3)_4\) (Rh1), \(\text{cis}-[\text{Rh}_2(\mu-\text{O}_2\text{CCH}_3)_2(\text{NCCH}_3)_2][\text{BF}_4]_2\) (Rh2), and \(\text{Rh}_2(\mu-\text{O}_2\text{CCF}_3)_4\) (Rh3) with radiolabeled 123 bp dsDNA at increasing metal concentrations.

Photochemistry and DNA Photocleavage in Vitro

Dirhodium complexes are being investigated by the Turro group at The Ohio State University as potential antitumor agents in photochemotherapy, which involves triggering the toxicity of a compound by irradiation of the affected
which requires an electron acceptor in solution,\(^ {58}\) effect direct pUC18 plasmid photocleavage in vitro of acceptors.\(^ {57}\) Irradiation of Rh\(_2\)(μ-O\(_2\)CCH\(_3\))\(_4\) with visible light (\(\lambda_{\text{irr}}\) = 400–610 nm), in the presence of electron acceptors, results in DNA photocleavage by the mixed-valent cation [Rh\(_2\)(μ-O\(_2\)CCH\(_3\))\(_4\)]\(^{4+}\). Unlike Rh\(_2\)(μ-O\(_2\)CCH\(_3\))\(_4\), which requires an electron acceptor in solution,\(^ {58}\) Rh\(_2\)\(^{4+}\) complexes with dppz (dppz = dipyrdo[3,2-αZ,3'-c]phenazine), cis-[Rh\(_2\)(μ-O\(_2\)CCH\(_3\))\(_2\)(dppz)(η\(^1\)-O\(_2\)CCH\(_3\))-(CH\(_3\)OH)]\(^{5+}\) and cis-[Rh\(_2\)(μ-O\(_2\)CCH\(_3\))\(_2\)(dppz)]\(^{2+}\) (Figure 16),\(^ {60}\) effect direct pUC18 plasmid photocleavage in vitro upon irradiation with visible light (\(\lambda_{\text{irr}}\) ≥ 395 nm) resulting in nicked circular DNA. An enhancement of photocleavage is observed for cis-[Rh\(_2\)(μ-O\(_2\)CCH\(_3\))\(_2\)(dppz)(η\(^1\)-O\(_2\)CCH\(_3\))-(CH\(_3\)OH)]\(^{5+}\), which may be due to its ability to intercalate DNA bases.\(^ {60}\) The species cis-[Rh\(_2\)(μ-O\(_2\)CCH\(_3\))\(_2\)(dppz)]\(^{2+}\) exhibits relatively low cytotoxicity toward human skin cells in the dark, but its toxicity increases 3.4-fold upon irradiation of the cell cultures with visible light.\(^ {60}\) Likewise, the cytotoxicity of the heteroleptic species cis-[Rh\(_2\)-(μ-O\(_2\)CCH\(_3\))(bpy)(dppz)]\(^{2+}\) (Figure 17) increases 5-fold upon irradiation, with the advantage of 10-fold lower toxicity than hematoporphyrin (key component in Photofrin) in the dark.\(^ {61}\) These results render the aforementioned compounds promising candidates for photochemotherapy.

Concluding Remarks and Future Prospects

The results presented in this Account constitute the current state of knowledge regarding DNA binding properties of dinuclear anticancer active agents. The combined results of NMR spectroscopy, X-ray crystallography, and various biochemical tools have contributed to an improved understanding of specific DNA binding motifs of dinuclear metal complexes. Among the important points that have emerged is the fact that, counter to conventional wisdom, two adjacent Lewis acid metal sites of a dinuclear complex are favorably poised to interact with two tethered purine bases in a manner akin to cisplatin. Interestingly, metal binding to the bases leads to generation of rare nucleobase tautomers and induces changes to their hydrogen-bonding properties that are known to lead to DNA mutations and cell death. By tailoring the bridging and other eg groups on the dimetal unit, one can effectively control the compound activity and toxicity, as well as the potential for the complexes to covalently bind to or intercalate DNA bases. Introduction of electron acceptor functionalities on the dirhodium core represents an important new direction in the design of future dinuclear photochemotherapeutic agents. Our recent findings unequivocally demonstrate that dirhodium compounds bind to dsDNA by forming interstrand cross-links and provide valuable insight into the possible underlying mechanism(s) of their antitumor behavior. The data obtained thus far constitute an excellent backdrop for further biochemical studies of metal–metal-bonded systems including rational design of promising anticancer candidates.

References

Interactions of Dinuclear Antitumor Complexes with DNA

Chifotides and Dunbar

AR0302078