

Coal vs. Natural Gas Energy Production

Daniel Frazier, Renee Gomez, Nathan Westbrook

Roadmap

- Global energy demand on the rise!
- Why do we care?
- Overview of coal based energy production
- Overview of natural gas based energy production
- Quantifying environmental impact
- Coal vs. Natural Gas-The impacts and improvements
- Final verdict

Global Energy Demand Is Growing!

- Global energy demand grew by 8% from 2008-2012
- Demand projected to increase by 37% by 2040
- Development of renewables is being outpaced by energy demand growth
- How to meet this increasing demand?
 - Coal
 - Natural Gas

Question

Given the choice of either <u>coal</u> or <u>natural</u> <u>gas</u> based power production, which is better?

Let's take a look!

Environmental Concerns

- Traditional methods of energy production produce greenhouse gases.
 - Global warming
 - Other environmental concerns
- Important issue when comparing energy sources!

Coal Based Energy Production

- "Traditional" fuel for electricity production
- Accounts for ~40% of electricity production nationwide
- Used to produce electricity for public since first "Edison Plant" in NY in 1882.

Typical Coal Power Plant Process

Source: http://www.ascovalve.com/Common/Images/Coal_Plant_Simple.jpg

Impacts of Coal Based Power Production

- Significant water use to remove impurities
- Emission of CO₂, SO₂, NO_X, mercury compounds
- Leaves behind ash → requires disposal

Natural Gas Based Energy Production

- Newer technology
- Accounts for ~28% of electricity production in the U.S.
 - But this number is growing!
- Results in significant reduction of GHG emissions at the plant level!
- Can be transported in pipeline → lower energy requirement than coal

Typical Natural Gas Power Plant Process

Source: http://www.c2es.org/publications/leveraging-natural-gas-reduce-greenhouse-gas-emissions

Impacts of Natural Gas Based Power Production

- Methane leakage in pipelines
- Hydraulic fracturing used to produce natural gas
- Impacts of hydraulic fracturing may outweigh NG benefits as fuel source

Is Natural Gas the Answer?

Background

- Methane
 - More potent GHG

- CO₂- ↑ atmospheric lifetime
- CH_4 \downarrow atmospheric lifetime

Heat Trapping Ability

Quantifying Greenhouse Gas Emissions-Radiative Forcing:

RF=(incoming solar radiation)-(outgoing solar radiation)

- Assess climate response of different GHGs
- Instantaneous measure
 - must consider future impacts

http://www.thetruthdenied.com/news/2014/04/25/debunk-climatechange-srm-with-cemenite/

Comparison of RF Values of Coal and Natural Gas

Life Cycle Assessment

- 100 year period
 - Methane
 - CO₂
 - Upstream CO₂
 - Sale of fossil fuels

Climatic Change Letters. 2011

Greener Processes for Energy Conversion

 New processes of converting coal to energy

• New methods of acquiring natural gas

Underground Coal Gasification (UCG)

Proc. Inst. Civ. Eng.-Energy 2012, 165, 165-167.

Integrated Gasification Combined Cycle (IGCC)

http://large.stanford.edu/courses/2012/ph240/mao2/

Comparison of IGCC with and without Carbon Capture and Storage (CCS)

	IGCC	IGCC+CCS
Coal chemical power input (MW)	1000	1000
Gross power output (MW)	513.4	459.3
CO ₂ capture and compression (MW)	0	32.1
Net power output (MW)	438.8	352.6
Net efficiency (%)	43.88	35.26
CO ₂ specific emissions (g/kW h)	770.1	95.9

Appl. Energy 2014, 113, 1461-1474.

Biomass Conversion into Methane

http://www.upsbatterycenter.com/blog/biochemical-conversion-biomass-energy/

Methane Captured from Landfills

http://epa.gov/climatestudents/solutions/technologies/methane.html

Conclusions

- Coal vs. Natural Gas, which is better?
 - Evidence does not lend itself strongly to either side
- Future work
 - Reduce environmental impact of each approach through technological development
- Recommendation

– Underground natural gas fed power plant

Works Cited

- https://www.iea.org/Textbase/npsum/WEO20 14SUM.pdf
- http://static.berkeleyearth.org/memos/climateimpacts-of-coal-and-natural-gas.pdf
- http://www.scientificamerican.com/article/swit ch-to-natural-gas-slashes-power-plantpollution/
- https://www.encana.com/natural-gas/powergeneration.html

Presentation Overview

- Global energy demand on the rise!
- Why do we care?
- Overview of coal based energy production
- Overview of natural gas based energy production
- Quantifying environmental impact
- Coal vs. Natural Gas-The impacts and improvements
- Final verdict