Roadmap

• Global energy demand on the rise!
• Why do we care?
• Overview of coal based energy production
• Overview of natural gas based energy production
• Quantifying environmental impact
• Coal vs. Natural Gas-The impacts and improvements
• Final verdict
Global Energy Demand Is Growing!

- Global energy demand grew by 8% from 2008-2012
- Demand projected to increase by 37% by 2040
- Development of renewables is being outpaced by energy demand growth
- How to meet this increasing demand?
 - Coal
 - Natural Gas
Question

Given the choice of either coal or natural gas based power production, which is better?

Let’s take a look!
Environmental Concerns

• Traditional methods of energy production produce greenhouse gases.
 – Global warming
 – Other environmental concerns

• Important issue when comparing energy sources!
Coal Based Energy Production

• “Traditional” fuel for electricity production
• Accounts for ~40% of electricity production nationwide
• Used to produce electricity for public since first “Edison Plant” in NY in 1882.
Typical Coal Power Plant Process

Source: http://www.ascovalve.com/Common/Images/Coal_Plant_Simple.jpg
Impacts of Coal Based Power Production

• Significant water use to remove impurities
• Emission of CO$_2$, SO$_2$, NO$_X$, mercury compounds
• Leaves behind ash requires disposal
Natural Gas Based Energy Production

• Newer technology

• Accounts for ~28% of electricity production in the U.S.
 – But this number is growing!

• Results in significant reduction of GHG emissions at the plant level!

• Can be transported in pipeline → lower energy requirement than coal
Typical Natural Gas Power Plant Process

Impacts of Natural Gas Based Power Production

• Methane leakage in pipelines
• Hydraulic fracturing used to produce natural gas
• Impacts of hydraulic fracturing may outweigh NG benefits as fuel source
Is Natural Gas the Answer?

Estimated emission reductions of natural gas versus coal in electrical generation:

- Carbon dioxide: 50 - 60%
- Carbon monoxide: 90%
- Sulfur dioxide: 99%
- Nitrogen oxide: 80 - 90%
- Particulate matter: 99%
- Mercury: 100%
Background

- Natural gas - ↓ CO₂
- Methane
 - More potent GHG

- CO₂ - ↑ atmospheric lifetime
- CH₄ - ↓ atmospheric lifetime
Quantifying Greenhouse Gas Emissions-
Radiative Forcing:

\[RF = (\text{incoming solar radiation}) - (\text{outgoing solar radiation}) \]

- Assess climate response of different GHGs
- Instantaneous measure
 - must consider future impacts

Comparison of RF Values of Coal and Natural Gas

- Coal CO_2
- Gas CO_2
- Gas CH_4

Long-term
Coal produces 2X CO_2
NGas↑

Short-term
Ngas ($\text{CO}_2 + \text{CH}_4$) = Coal
NGas↓

Berkeley Earth, 2014, 12-14.
Life Cycle Assessment

- 100 year period
 - Methane
 - CO$_2$
 - Upstream CO$_2$
 - Sale of fossil fuels

Climatic Change Letters. 2011
Greener Processes for Energy Conversion

- New processes of converting coal to energy
- New methods of acquiring natural gas
Underground Coal Gasification (UCG)
Integrated Gasification Combined Cycle (IGCC)

http://large.stanford.edu/courses/2012/ph240/mao2/
Comparison of IGCC with and without Carbon Capture and Storage (CCS)

<table>
<thead>
<tr>
<th></th>
<th>IGCC</th>
<th>IGCC+CCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal chemical power input (MW)</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Gross power output (MW)</td>
<td>513.4</td>
<td>459.3</td>
</tr>
<tr>
<td>CO$_2$ capture and compression (MW)</td>
<td>0</td>
<td>32.1</td>
</tr>
<tr>
<td>Net power output (MW)</td>
<td>438.8</td>
<td>352.6</td>
</tr>
<tr>
<td>Net efficiency (%)</td>
<td>43.88</td>
<td>35.26</td>
</tr>
<tr>
<td>CO$_2$ specific emissions (g/kW h)</td>
<td>770.1</td>
<td>95.9</td>
</tr>
</tbody>
</table>

Biomass Conversion into Methane

http://www.upsbatterycenter.com/blog/biochemical-conversion-biomass-energy/
Methane Captured from Landfills

http://epa.gov/climatestudents/solutions/technologies/methane.html
Conclusions

• Coal vs. Natural Gas, which is better?
 – Evidence does not lend itself strongly to either side

• Future work
 – Reduce environmental impact of each approach through technological development

• Recommendation
 – Underground natural gas fed power plant
Works Cited

• https://www.iea.org/Textbase/npsum/WEO2014SUM.pdf
• https://www.encana.com/natural-gas/power-generation.html
Global energy demand on the rise!
Why do we care?
Overview of coal based energy production
Overview of natural gas based energy production
Quantifying environmental impact
Coal vs. Natural Gas-The impacts and improvements
Final verdict