Home > Directory > Alphabetical Faculty Listing > Karen L Wooley

Karen L Wooley
- W. T. Doherty-Welch Professor Chair and Distinguished Professor of Chemistry
- Professor of Chemical Engineering
- Director, TAMU Laboratory for Synthetic-Biologic Interactions
- National Institutes of Health NANO Study Section Chair
- TIPS ETF Research Superiority Researcher

Ph.D., Cornell University

Contact Information:
Department of Chemistry
Texas A&M University
College Station, TX 77843-3255

Phone: (979) 845-4077
Fax: (979) 862-1137
wooley@chem.tamu.edu

Related Web Sites

Awards

Areas of Interest


Current Activities

Our research activities combine organic syntheses, polymerization strategies and polymer modification reactions in creative ways to afford unique macromolecular structures, which have been designed as functional nanostructures, polymer systems having unique macromolecular architectures, and/or degradable polymers. The emphasis is upon the incorporation of functions and functionalities into selective regions of polymer frameworks. In some cases, the function is added at the small molecule, monomer, stage, prior to polymerization, whereas, in other cases, chemical modifications are performed upon polymers or at the nanostructure level; each requires a strategic balance of chemical reactivity and the ultimate composition and structure.

Fundamental and applied studies are leading toward the incorporation of various functions into polymer materials, including biological activity, imaging capabilities, drug or gene delivery performance, toxin sequestration, photo- or electroactivity, triggered destruction, chemical reactivity, anti-biofouling characteristics, among others. Covalent and non-covalent interactions are employed in the development of new synthetic methodologies for the construction of the materials. Rigorous physicochemical characterization and in vitro and in vivo biological evaluations are performed. Therefore, students gain broad experience and achieve expertise across disciplines, with a foundation based upon organic chemistry, and extensions into analytical, physical and biological chemistries and engineering. Current projects aim to: 1) develop polymer coatings and nanostructures that exhibit minimized non-specific biological interactions and maximized specific biological interactions to achieve non-toxic anti-biofouling performance, tissue-selective targeting, tissue engineering, etc.; 2) expand the types of discrete nanoscale objects that can be produced from the supramolecular assembly of programmed block copolymers and/or from the intramolecular assembly of sophisticated macromolecular architectures; 3) advance polymerization chemistries to achieve selective polymerization of multi-functional monomers; 4) incorporate function into degradable polymers and degradable units regioselectively into nanostructures; 5) design materials as hosts for the controlled packaging, transport and release of diagnostic and therapeutic agents; 6) engineer complex materials as highly sensitive and multi-modal Imaging agents; 7) develop synthetic methodologies to control the size, shape, and composition of nanostructures and investigate their hierarchicalassemblies.


Selected Publications

Imbesi, P. M.; Fidge, C.; Cauët, S.; Wooley, K. L. "Model Diels-Alder studies for the creation of amphiphilic crosslinked networks as healable, anti-biofouling coatings", ACS Macro Lett., 2012, 1, 473-477.

Elsabahy M.; Wooley, K. L. "Design of polymeric nanoparticles for biomedical delivery applications", Chem. Soc. Rev., 2012, 41, 2545-2561.

Zhang, S.; Li, A.; Zou, J.; Lin, L. Y.; Wooley, K. L. "Facile Synthesis of Clickable, Water-soluble and Degradable Polyphosphoesters", ACS Macro Lett., 2012, 1(2), 328-333.

Ware, T.; Hearon, K.; Lonnecker, A.; Wooley, K. L.; Maitland, D. J.; Voit, W. "Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding", Macromolecules, 2012, 45(2), 1062-1069.

Samarajeewa, S.; Shrestha, R.; Li, Y.; Wooley, K. L. "Degradability of Poly(lactic acid)-containing Nanoparticles: Enzymatic access through a crosslinked shell barrier", J. Am. Chem. Soc., 2012, 134, 1235-1242.

Nyströ m, A. M.; Wooley, K. L. "The Importance of Chemistry in Creating Well-defined Nanoscopic Embedded Therapeutics: Devices capable of the dual functions of imaging and therapy", Acc. Chem. Res., 2011, 44(10), 969-978, NIHMSID: 304595, PMCID: PMC3196832.

Lee, N. S.; Sun, G.; Lin, L. Y.; Neumann, W. L.; Freskos, J. N.; Karwa, A.; Shieh, J. J.; Dorshow, R. B.; Wooley, K. L. "Tunable Dual-emitting Shell-crosslinked Nano-objects as Single-component Ratiometric pH-sensing Materials", J. Mater. Chem., 2011, 21(37), 14193-14202, DOI: 10.1039/C1JM11854D.

Bartels, J. W.; Imbesi, P. M.; Finlay, J. A.; Fidge, C.; Ma, J.; Seppala, J. E.; Nyströ m, A. M.; Mackay, M. E.; Callow, J. A.; Callow, M. E.; Wooley, K. L. "Anti-biofouling Hybrid Dendritic Boltorn/Star PEG Thiol-ene Crosslinked Networks", ACS Appl. Mater. Interfaces, 2011, 3(6), 2118-2129, PMID: 21644572.

Besset, C. J.; Lonnecker, A. T.; Streff, J. M.; Wooley, K. L. "Polycarbonates from the Polyhydroxy Natural Product Quinic Acid", Biomacromolecules, 2011, 12(7), 2512-2517, NIHMSID: 309962.

Lin, L. Y.; Lee, N. S.; Zhu, J.; Nyströ m, A. M.; Pochan, D. J.; Dorshow, R. B.; Wooley, K. L. "Tuning Core vs. Shell Dimensions to Adjust the Performance of Nanoscopic Containers for the Loading and Release of Doxorubicin", J. Controlled Release, 2011, 152(1), 37-48. PMID: 21241750, NIHMS: 282038.

Accessibility | Site Policies | Texas A&M University | Contact Us