Home > Research > Francois P Gabbai

Francois P Gabbai
Professor
Ph. D., University of Texas

Contact Information:
Department of Chemistry
Texas A&M University
College Station, TX 77843-3255

Phone: (979) 862-2070
Fax: (979) 845-4719
gabbai@chem.tamu.edu

Related Web Sites

Awards

Areas of Interest


Current Activities

Our research is concerned with the chemistry of both organic and organometallic polyfunctional Lewis acids. While an important component of our work deals with the synthesis of new examples of such polyfunctional Lewis acids, it is our ultimate intent to harness and utilize the cooperative effects occurring in such systems for the discovery of unusual structures, bonding modes, supramolecules and reactivities. Our research efforts present important ramifications in the domain of molecular recognition, supramolecular materials and catalysis.

Synthesis: Organic and organometallic synthesis lies at the focal point of our program. We strive to discover high yield synthetic routes for the preparation of both organic and organometallic polyfunctional Lewis acids. These efforts have allowed us to prepare a variety of bidentate and tridentate Lewis acids in which the electrophilic sites are simple carbocations or main-group elements such as mercury(II) and boron(III).

Bonding: In an effort to broaden our fundamental understanding of bonding interactions, we study atypical bonding situations that might arise in the chemistry of polyfunctional Lewis acids. While we have been interested in the formation of radicals featuring one-electron s-bonds, some of our current efforts are devoted to the synthesis of fluoronium ions.

Molecular recognition: Some of these polyfunctional Lewis acids act as polytopic receptors for anions. The significance of this research relates to the discovery of new molecular recognition units for sensory application. For example, we have recently demonstrated that boron-based bidentate Lewis acids can be used as selective colorimetric sensors for fluoride ions. Taking into account the importance of fluoride in the treatment of osteoporosis and in dental care, such sensors may find biomedical applications.

Supramolecular materials: In addition to discovering receptors for small organic molecules including diazines, ketones, aldehydes, oxiranes, and phosphonates, we have also found that trimeric perfluoro-ortho-phenylene mercury, a tridentate Lewis acid, is able to complex many arenes including benzene, naphthalene, biphenyl and pyrene. The resulting adducts form unusual supramolecular binary stacks. In addition, these adducts display unique luminescent properties which make them useful materials for organic light emitting diodes (OLED). Some of these adducts form microporous solids used for gas storage.


Neutral and Cationic Lewis acids in molecular and supramolecular chemistry.


Selected Publications

Ke, I.-S.; Myahkostupov, M.; Castellano, F. N.; Gabbaï, F. P. "Stibonium Ions for the Fluorescence Turn-On Sensing of F in Drinking Water at Parts per Million Concentrations" J. Am. Chem. Soc. 2012, 134, 15309-15311.

Wade, C. R.; Ke, I.-S.; Gabbaï, F. P. "Sensing of Aqueous Fluoride Anions by Cationic Stibine–Palladium Complexes" Angew. Chem. Int. Ed. 2012, 51, 478-481.

Lin, T.-P.; Nelson, R. C.; Wu, T.; Miller, J. T.; Gabbaï, F. P. "Lewis acid enhancement by juxtaposition with an onium ion: the case of a mercury stibonium complex" Chem. Sci. 2012, 3, 1128-1136.

Lin, T.-P.; Ke, I.-S.; Gabbaï, F. P. "σ-Accepting Properties of a Chlorobismuthine Ligand" Angew. Chem. Int. Ed. 2012, 51, 4985-4988.

Lin, T.-P.; Gabbaï, F. P. "Two-Electron Redox Chemistry at the Dinuclear Core of a TePt Platform: Chlorine Photoreductive Elimination and Isolation of a TeVPtI Complex" J. Am. Chem. Soc. 2012, 134, 12230-12238.

Li, Z.; Chansaenpak, K.; Liu, S.; Wade, C. R.; Conti, P. S.; Gabbaï, F. P. "Harvesting 18F-fluoride ions in water via direct 18F-19F isotopic exchange: radiofluorination of zwitterionic aryltrifluoroborates and in vivo stability studies" MedChemComm 2012, 3, 1305-1308.

Wade, C. R.; Lin, T.pP.; Nelson, R. C.; Mader, E. A.; Miller, J. T.; Gabbaï, F. P. "Synthesis, Structure, and Properties of a T-Shaped 14-Electron Stiboranyl-Gold Complex" J. Am. Chem. Soc. 2011, 133, 8948-8955.

Wade, C. R.; Gabbaï, F. P. "Fluoride Anion Chelation by a Bidentate Stibonium–Borane Lewis Acid" Organometallics 2011, 30, 4479-4481.

Wade, C. R.; Gabbaï, F. P. "Two-Electron Redox Chemistry and Reversible Umpolung of a Gold–Antimony Bond" Angew. Chem. Int. Ed. 2011, 50, 7369-7372.

Li, Z.; Lin, T.pP.; Liu, S.; Huang, C.-W.; Hudnall, T. W.; Gabbaï, F. P.; Conti, P. S. "Rapid aqueous [18F]-labeling of a bodipy dye for positron emission tomography/fluorescence dual modality imaging" Chem. Commun. 2011, 47, 9324-9326.

Zhao, H.; Gabbaï, F. P. "A bidentate Lewis acid with a telluronium ion as an anion-binding site" Nat. Chem. 2010, 2, 984-990.

Lin, T.pP.; Wade, C. R.; Pérez, L. M.; Gabbaï, F. P. "A Mercury→Antimony Interaction" Angew. Chem. Int. Ed. 2010, 49, 6357-6360.

Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S.; Gabbaï, F. P. "Fluoride Ion Complexation and Sensing Using Organoboron Compounds" Chem. Rev. 2010, 110, 3958-3984.

Kim, Y.; Zhao, H.; Gabbaï, F. P. "Sulfonium boranes for the selective capture of cyanide ions in water" Angew. Chem. Int. Ed. 2009, 48, 4957-4960.

Kim, Y.; Gabbaï, F. P. "Cationic Boranes for the Complexation of Fluoride Ions in Water below the 4 ppm Maximum Contaminant Level" J. Am. Chem. Soc. 2009, 131, 3363-3369.

Hudnall, T. W.; Chiu, C.-W.; Gabbaï, F. P. "Fluoride ion recognition by chelating and cationic boranes" Acc. Chem. Res. 2009, 42, 388-397.

Accessibility | Site Policies | Texas A&M University | Contact Us