

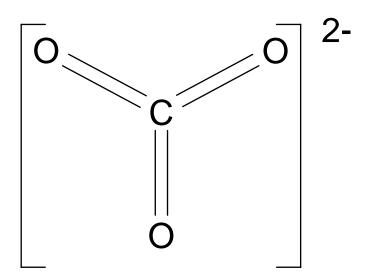
The Octet Rule: Examples

- For ions we must adjust the number of electrons available, A:
 - Add one e⁻ to A for each negative charge
 - Subtract one e⁻ from A for each positive charge
- NH₄⁺
- BF₄-

Example: CO₃²-

Resonance

- There are three possible structures for CO_3^{2-}
 - The double bond can be placed in one of three places


$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}^{2} \longleftrightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}^{2} \longleftrightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}^{2}$$

- These are called equivalent resonance structures
- The real structure of the CO_3^{2-} anion is an average of these three resonance structures

Resonance

- There are no single or double bonds in CO_3^{2-}
- All three bonds are equivalent
- They are intermediate between the single and double bond

Resonance: Other Examples

■ SO₃

Resonance: Other Examples

■ NO₃-

Resonance: Other Examples

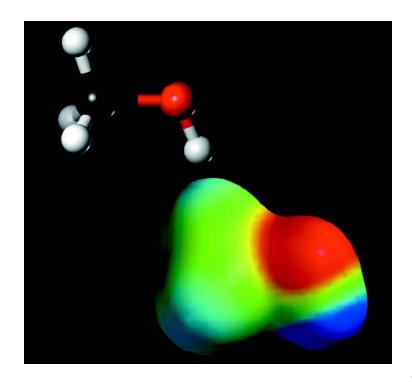
■ SO₄²⁻

Exceptions to the Octet Rule

- In those cases where the octet rule does not apply, the substituents attached to the central atom nearly always attain noble gas configurations
- The central atom does not have a noble gas configuration but may have fewer than 8 or more than 8 electrons

■ BBr₃

AsF₅


Assignments & Reminders

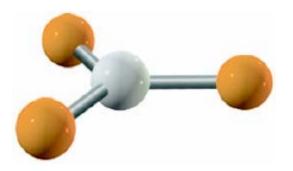
- Go through the recent lecture notes
- Read Chapter 7 completely, except for Sections 7-7 & 7-8
- Homework #4 due by Oct. 16 @ 3 p.m.
- Review Session @ 5:15 p.m. on Sunday

CHAPTER 8

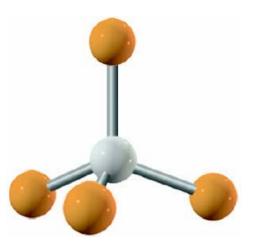
 Molecular Structure & Covalent Bonding Theories

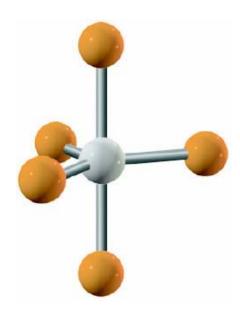
Stereochemistry

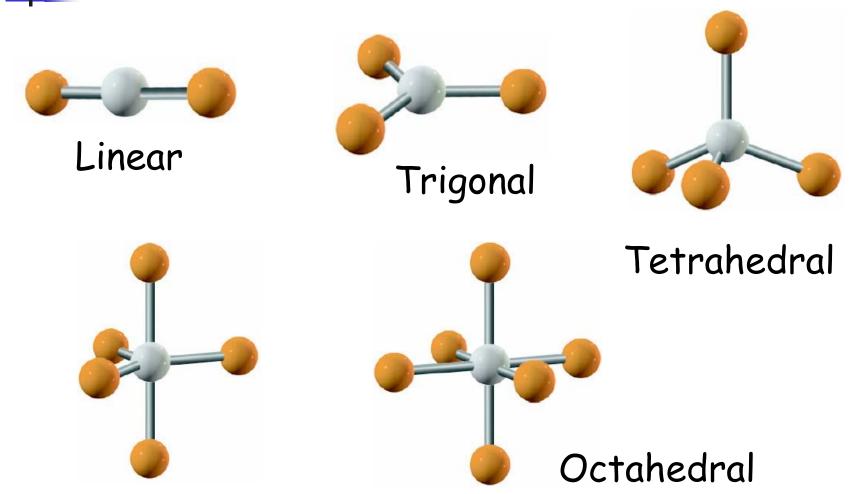
- The study of the three-dimensional shapes of molecules
- With the knowledge acquired so far we will be able to predict the shapes of molecules and ions
- Our instrument Valence Shell Electron Pair Repulsion theory (VSEPR theory - R. J. Gillespie)


VSEPR Theory

- In any molecule or ion there are regions of high electron density:
 - Bonds (shared electron pairs)
 - Lone pairs (unshared electrons)
- Due to electron-electron repulsion, these regions are arranged as far apart as possible
- Such arrangement results in the minimum energy for the system


BeCl₂


BBr₃



SF₆

Five Basic Geometries

Trigonal bipyramidal

SiF₄

NH₃

Electronic Geometry and Molecular Geometry

Electronic geometry

 Distribution of regions of high electron density around the central atom

Molecular geometry

Arrangement of atoms around the central atom

H₂O