Oxidation Numbers: Rules

- 1) The oxidation number of the atoms in any free, uncombined element, is zero
- 2) The sum of the oxidation numbers of all atoms in a compound is zero
- 3) The sum of the oxidation numbers of all atoms in an ion is equal to the charge of the ion
- The oxidation number of <u>fluorine</u> in all its compounds is -1
- 5) The oxidation number of <u>other halogens</u> in their compounds is usually -1

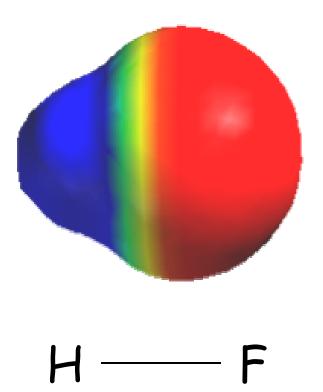
Oxidation Numbers: Rules

- 6) The oxidation number of <u>hydrogen</u> is +1 when it is combined with more electronegative elements (most nonmetals) and -1 when it is combined with more electropositive elements (metals)
- The oxidation number of Group 1A elements is always +1 and the oxidation number of Group 2A elements is always +2
- 8) The oxidation number of oxygen in most compounds is -2
- 9) Oxidation numbers for other elements are usually determined by the number of electrons they need to gain or lose to attain the electron configuration of a noble gas

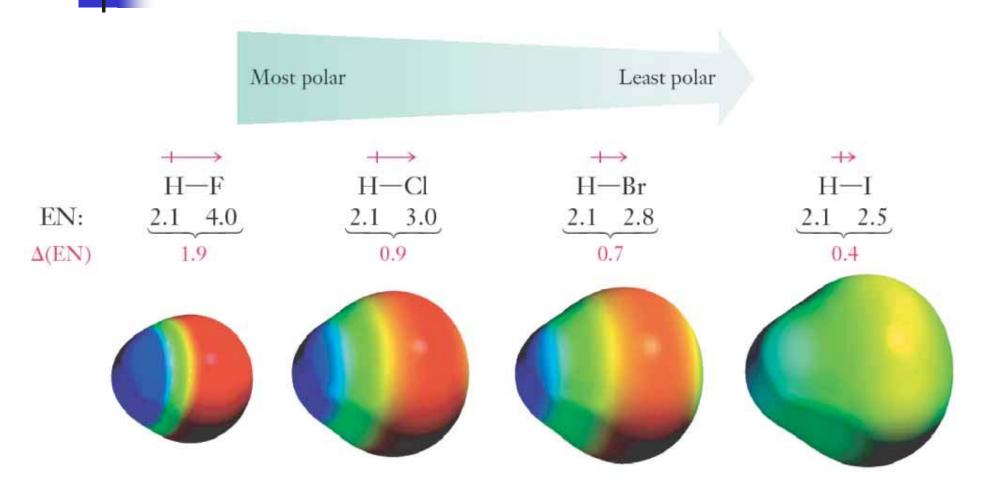
Na - $e^- \rightarrow Na^+$ Cl + $e^- \rightarrow Cl^-$

 $Na + CI \rightarrow Na^+ + CI^-$

- Na⁺ cations and Cl⁻ anions are electrostatically attracted to each other resulting in an extended ionic lattice
- We say that Na⁺ and Cl⁻ ions are held together by ionic bonding


- This bond is called a <u>nonpolar</u> covalent bond
- It is characterized by the symmetrical charge distribution

- F is more electronegative than H
- In this molecule the electron pair will be shifted towards the F atom


- This bond is called a <u>polar</u> covalent bond
- The charge distribution is not symmetrical

Electron Density Distribution

- Blue low electron density (more positive)
- Red high electron density (more negative)

@ 2004 Thomson/Brooks Cole

Polar Molecules

- Polar molecules can be attracted by magnetic and electric fields
- We sometimes represent these molecules as <u>dipoles</u>
- The direction of the dipole is from the positive to the negative pole
- Each dipole is characterized by a <u>dipole moment</u>
- The larger the difference in the electronegativities of the bonded elements, the higher the dipole moment of the molecule

The Continuous Range of Bonding Types

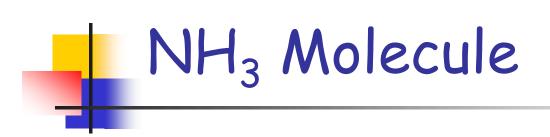
- Covalent and ionic bonding represent two extremes:
 - In pure nonpolar covalent bonds electrons are equally shared by the atoms
 - In pure electrostatic ionic bonds electrons are completely transferred from one atom to the other
- Most compounds fall somewhere between these two extremes

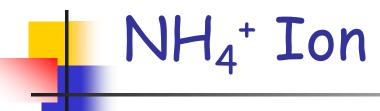
The Continuous Range of Bonding Types

- All bonds have some ionic and some covalent character
 - For example, HI is about 17% ionic and 83% covalent
- As the electronegativity difference increases, the bond becomes
 - more polar
 - less covalent
 - more ionic

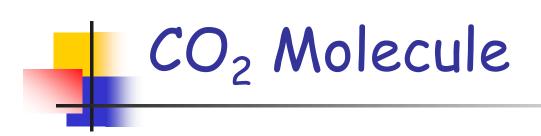
- Which of these bonds is more polar:
 - N–O
 - *C*–*C*|
 - Na-H
 - Na-Br

- Which of these bonds is less covalent:
 - Al-I
 - Al-Cl
 - Al-F
 - Al-Br

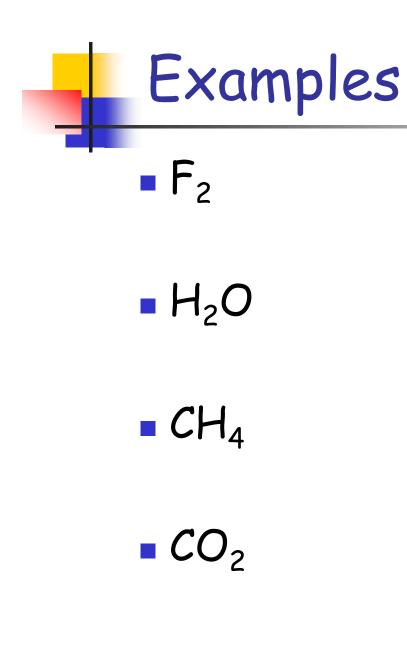


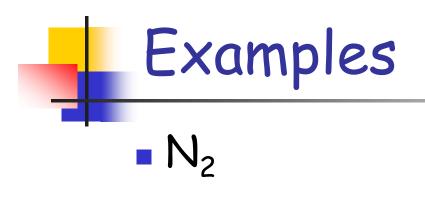

- Which of these bonds has the highest dipole moment:
 - *C*−B
 - *C*–*C*
 - *C*–N
 - *C*–*O*
 - *C*−F

The Octet Rule


- In <u>most</u> of their compounds, the representative elements achieve noble gas configurations
- Lewis dot formulas are based on the <u>octet rule</u>
- Electrons which are shared among two atoms are called <u>bonding</u> <u>electrons</u>
- Unshared electrons are called <u>lone pairs</u> or <u>nonbonding electrons</u>

 Lewis formulas can also be drawn for polyatomic ions


Covalent Bonding


- Covalent bonds are formed when atoms share electrons
 - If the atoms share 2 electrons a single covalent bond is formed
 - If the atoms share 4 electrons a double covalent bond is formed
 - If the atoms share 6 electrons a triple covalent bond is formed

The Octet Rule

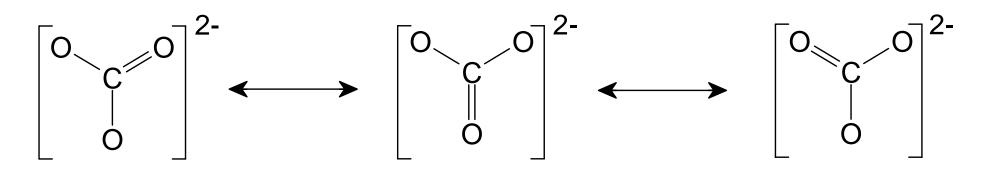
S = N - A

- S = total number of electrons shared in bonds
- N = total number of electrons needed to achieve a noble gas configuration
 - 8 for representative elements
 - 2 for H atoms
- A = total number of electrons available in valence shells of the atoms
 - A is equal to the periodic group number for each element
- A-S = number of electrons in lone pairs

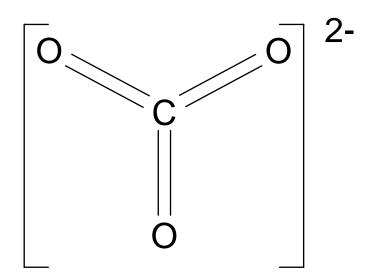
CO

 C_2H_2

HCN


- For ions we must adjust the number of electrons available, A:
 - Add one e⁻ to A for each negative charge
 - Subtract one e⁻ from A for each positive charge
- NH₄⁺

■ BF₄⁻


- There are three possible structures for CO_3^{2-}
 - The double bond can be placed in one of three places

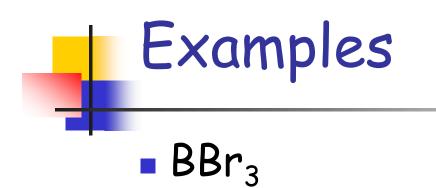
- These are called equivalent <u>resonance structures</u>
- The real structure of the CO_3^{2-} anion is an average of these three resonance structures

- There are no single or double bonds in CO_3^{2-}
- All three bonds are equivalent
- They are intermediate between the single and double bond

Resonance: Other Examples

SO₃

Resonance: Other Examples


■ NO₃⁻

Resonance: Other Examples

■ SO₄²⁻

Exceptions to the Octet Rule

- In those cases where the octet rule does not apply, the substituents attached to the central atom nearly always attain noble gas configurations
- The central atom does not have a noble gas configuration but may have fewer than 8 or more than 8 electrons

Assignments & Reminders

- Go through the lecture notes
- Read Chapter 7 completely, except for Sections 7-7 & 7-8
- Read Sections 4-5 & 4-6 of Chapter 4
- Homework #4 due by Oct. 16 @ 3 p.m.
- Review Session @ 5:15 p.m. on Sunday