- Calculate the acid ionization constant of an unknown monoprotic weak acid, HA, if its anion, A⁻, has a hydrolysis constant of 6.2 x 10⁻⁹.
 (a) 6.0 x 10⁻⁷
 (b) 4.3 x 10⁻⁶
 (c) 4.5 x 10⁻⁷
 (d) 5.6 x 10⁻⁸
 (e) 1.6 x 10⁻⁶
- 2. Which of the following titrations could the following curve describe?

(a)KOH added to HNO_3 (b)HCl added to aq. NH_3 (c)HNO₃ added to KOH (d) NaOH added to HF (e) CH₃COOH added to aq. NH_3

- 3. If 100. mL of 0.040 *M* NaOH is added to 100. mL of a solution which is 0.10 *M* in CH₃COOH and 0.10 *M* in NaCH₃COO, what will the pH of the new soln.?
- 4. Write the K_{sp} expression of $Mn(OH)_3$ in terms of it's molar solubility(s).
- 5. Given that K_{sp} for Cd(OH)₂ is 1.0 x 10⁻¹⁴ and that K_{sp} for Mn(OH)₃ is 1.0 x 10⁻³⁶, answer the following questions. If gaseous NH₃ is bubbled into an acidic solution that is 1.0 x 10⁻² *M* in Cd²⁺ and 1.0 x 10⁻¹² *M* in Mn³⁺, which metal hydroxide will precipitate first? What will the concentration of the cation of the least soluble metal hydroxide that will still be in solution when the most soluble metal hydroxide just begins to precipitate?
- 6. Consider solutions of the five indicated salts dissolved in water. Which one could not possibly have the pH designated?

	<u>Salt Solution</u>	pH
(a)	NaCl	7.00
(b)	NaF	8.16
(c)	NH ₄ Cl	7.64
(d)	KCN	9.48
(e)	NH_4NO_3	5.90

7. Which indicator could be used to titrate aqueous NH₃ with HCl solution Acid Range Color pH Range Basic Range Color

<u>ricia riange ooror</u>		printango	<u>Bable Hange Colo</u>
(a)	pink	1.2-2.8	yellow
(b)	blue	3.4-4.6	yellow
(c)	yellow	7.0-7.8	purple
(d)	colorless	8.3-9.9	red
(e)	none of these indicators		

8. AgCl would be least soluble at 25° C in ____. (a) pure water (b) $0.50 M \text{AgNO}_3$ (c) 0.1 M HCl(d) $0.1 M \text{AgNO}_3$ (e) $0.1 M \text{CaCl}_2$

- 9. The solubility of Ce(OH)₃ is 9.93 x 10⁻⁴ g per liter at 25°C. Calculate the solubility product for Ce(OH)₃.
 (a) 5.2 x 10⁻⁶
 (b) 2.0 x 10⁻²⁰
 (c) 7.3 x 10⁻²⁰
 (d) 4.0 x 10⁻¹⁴
 (e) 1.6 x 10⁻¹⁸
- 10. K_{sp} for CaF₂ is 3.9 x 10⁻¹¹ and K_{sp} for PbF₂ is 3.7 x 10⁻⁸. If 200 mL **each** of 5.0 x 10⁻³ *M* NaF, 2.0 x 10⁻⁵ *M* Ca(NO₃)₂, and 3.0 x 10⁻³ *M* Pb(NO₃)₂ solutions are mixed,
 - (a) only CaF_2 will precipitate.
 - (b) only PbF_2 will precipitate.
 - (c) both CaF_2 and PbF_2 will precipitate, and be visible.
 - (d) both CaF_2 and PbF_2 will precipitate, but **not** be visible.
 - (e) neither CaF₂ nor PbF₂ will precipitate
- 11. The pH of a 0.20 *M* solution of a weak monoprotic acid is 3.70. What is the value of the ionization constant for the acid?
 (a) 7.0 x 10⁻⁴
 (b) 4.0 x 10⁻⁶
 (c) 2.0 x 10⁻⁷
 (d) 1.8 x 10⁻⁵
 (e) 6.1 x 10⁻⁵
- 12. The hydrolysis constant for the anion, A⁻, of a weak acid, HA, is 2.9 x 10⁻⁷. What is the ionization constant for HA?
 (a) 9.1 x 10⁻²⁰ (b) 3.4 x 10⁻⁸ (c) 1.1 x 10⁻² (d) 7.1 x 10⁻⁶ (e) 1.4 x 10⁻⁴
- 13. Calculate the pH of a solution prepared by adding 115 mL of 0.100 *M* NaOH to 100 mL of 0.100 *M* HNO₃ solution.
 (a) 11.60 (b) 11.68 (c) 11.76 (d) 11.85 (e) 11.92
- 14. Calculate the pH of a solution prepared by adding 60.0 mL of 0.100 *M* NaOH to 100 mL of 0.100 *M* CH₃COOH solution.
 (a) 4.56 (b) 4.92 (c) 5.00 (d) 5.08 (e) 5.16
- 15. AgCl would be least soluble at 25°C in _____.
 (a) pure water
 (b) 0.1 *M* AgNO₃
 (c) 0.1 *M* CaCl₂
 (d) 0.1 *M* HNO₃
 (e) It is equally soluble in all of the preceding.
- 16. Calculate the concentration of sulfate ion in a saturated solution of barium sulfate to which barium chloride has been added until [Ba⁺²] = 0.1 *M* at 25°C. K_{sp} for BaSO₄ = 1 x 10⁻¹⁰.
 (a) 1 x 10⁻⁵ *M* (b) 1 x 10⁻⁸ *M* (c) 1 x 10⁻⁹ *M* (d) 1 x 10⁻⁷ *M* (e) 1 x 10⁻⁶ *M*
- 17. Solid Na₂SO₄ is added to a solution that is 0.30 *M* in both Sr²⁺ and Pb²⁺. Assuming no volume change, what will be the [Pb²⁺] at the point at which SrSO₄ just begins to precipitate at 25°C? *K*_{sp} for SrSO₄ = 2.8 x 10⁻⁷ and for PbSO₄ = 1.8 x 10⁻⁸.
 (a) 0.24 *M*(b) 0.16 *M*(c) 0.30 *M*(d) 0.019 *M*(e) 0.040 *M*
- ANSWERS: 1 (e), 2 (d), 3 (pH = 5.11), 4 ($K_{sp} = [Mn^{3+})[OH^{-}]^3$), 5 (Mn(OH)₃ first, 1 x 10⁻¹⁸ M Mn³⁺), 6 (c), 7 (b), 8 (b), 9 (b), 10 (e), 11 (c), 12 (b), 13 (d), 14 (b), 15 (c), 16 (c), 17 (d)