1. Calculate the acid ionization constant of an unknown monoprotic weak acid, HA, if its anion, A^{-}, has a hydrolysis constant of 6.2×10^{-9}.
(a) 6.0×10^{-7}
(b) 4.3×10^{-6}
(c) 4.5×10^{-7}
(d) 5.6×10^{-8}
(e) 1.6×10^{-6}
2. Which of the following titrations could the following curve describe?

(a) KOH added to HNO_{3} (b) HCl added to aq. NH_{3} (c) HNO_{3} added to KOH (d) NaOH added to HF
(e) $\mathrm{CH}_{3} \mathrm{COOH}$ added to aq. NH_{3}
3. If $100 . \mathrm{mL}$ of 0.040 M NaOH is added to 100 mL of a solution which is 0.10 M in $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.10 M in $\mathrm{NaCH}_{3} \mathrm{COO}$, what will the pH of the new soln.?
4. Write the K_{sp} expression of $\mathrm{Mn}(\mathrm{OH})_{3}$ in terms of it's molar solubility(s).
5. Given that K_{sp} for $\mathrm{Cd}(\mathrm{OH})_{2}$ is 1.0×10^{-14} and that K_{sp} for $\mathrm{Mn}(\mathrm{OH})_{3}$ is 1.0×10^{-36}, answer the following questions. If gaseous NH_{3} is bubbled into an acidic solution that is $1.0 \times 10^{-2} \mathrm{M}$ in Cd^{2+} and $1.0 \times 10^{-12} \mathrm{M}$ in Mn^{3+}, which metal hydroxide will precipitate first? What will the concentration of the cation of the least soluble metal hydroxide that will still be in solution when the most soluble metal hydroxide just begins to precipitate?
6. Consider solutions of the five indicated salts dissolved in water. Which one could not possibly have the pH designated?

	Salt Solution	pH
(a)	NaCl	7.00
	NaF	8.16
	$\mathrm{NH}_{4} \mathrm{Cl}$	7.64
(d)	KCN	9.48
	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	5.90

7. Which indicator could be used to titrate aqueous NH_{3} with HCl solution Acid Range Color
pH Range Basic Range Color
(a) pink
1.2-2.8
yellow
(b) blue
3.4-4.6
yellow
(c) yellow
7.0-7.8 purple
(d) colorless
8.3-9.9 red
(e) none of these indicators
8. AgCl would be least soluble at $25^{\circ} \mathrm{C}$ in \qquad .
(a) pure water
(b) $0.50 \mathrm{M} \mathrm{AgNO}_{3}$
(d) $0.1 \mathrm{M} \mathrm{AgNO}_{3}$
(e) $0.1 \mathrm{M} \mathrm{CaCl}_{2}$
(c) 0.1 M HCl
9. The solubility of $\mathrm{Ce}(\mathrm{OH})_{3}$ is $9.93 \times 10^{-4} \mathrm{~g}$ per liter at $25^{\circ} \mathrm{C}$. Calculate the solubility product for $\mathrm{Ce}(\mathrm{OH})_{3}$.
(a) 5.2×10^{-6}
(b) 2.0×10^{-20}
(c) 7.3×10^{-20}
(d) 4.0×10^{-14}
(e) 1.6×10^{-18}
10. $K_{\text {sp }}$ for CaF_{2} is 3.9×10^{-11} and $K_{\text {sp }}$ for PbF_{2} is 3.7×10^{-8}. If 200 mL each of $5.0 \times 10^{-3} \mathrm{M} \mathrm{NaF}, 2.0 \times 10^{-5} \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$, and $3.0 \times 10^{-3} \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solutions are mixed,
(a) only CaF_{2} will precipitate.
(b) only PbF_{2} will precipitate.
(c) both CaF_{2} and PbF_{2} will precipitate, and be visible.
(d) both CaF_{2} and PbF_{2} will precipitate, but not be visible.
(e) neither CaF_{2} nor PbF_{2} will precipitate
11. The pH of a 0.20 M solution of a weak monoprotic acid is 3.70. What is the value of the ionization constant for the acid?
(a) 7.0×10^{-4}
(b) 4.0×10^{-6}
(c) 2.0×10^{-7}
(d) 1.8×10^{-5}
(e) 6.1×10^{-5}
12. The hydrolysis constant for the anion, A^{-}, of a weak acid, HA, is 2.9×10^{-7}. What is the ionization constant for HA?
(a) 9.1×10^{-20}
(b) 3.4×10^{-8}
(c) 1.1×10^{-2}
(d) 7.1×10^{-6}
(e) 1.4×10^{-4}
13. Calculate the pH of a solution prepared by adding 115 mL of 0.100 M NaOH to 100 mL of $0.100 \mathrm{M} \mathrm{HNO}_{3}$ solution.
(a) 11.60
(b) 11.68
(c) 11.76
(d) 11.85
(e) 11.92
14. Calculate the pH of a solution prepared by adding 60.0 mL of 0.100 M NaOH to 100 mL of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution.
(a) 4.56
(b) 4.92
(c) 5.00
(d) 5.08
(e) 5.16
15. AgCl would be least soluble at $25^{\circ} \mathrm{C}$ in \qquad .
(a) pure water
(b) $0.1 \mathrm{M} \mathrm{AgNO}_{3}$
(c) 0.1 M CaCl 2
(d) $0.1 \mathrm{M} \mathrm{HNO}_{3}$
(e) It is equally soluble in all of the preceding.
16. Calculate the concentration of sulfate ion in a saturated solution of barium sulfate to which barium chloride has been added until $\left[\mathrm{Ba}^{+2}\right]=0.1 \mathrm{M}$ at $25^{\circ} \mathrm{C}$. $K_{\text {sp }}$ for $\mathrm{BaSO}_{4}=1 \times 10^{-10}$.
(a) $1 \times 10^{-5} \mathrm{M}$
(b) $1 \times 10^{-8} \mathrm{M}$
(c) $1 \times 10^{-9} \mathrm{M}$
(d) $1 \times 10^{-7} \mathrm{M}$
(e) $1 \times 10^{-6} \mathrm{M}$
17. Solid $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is added to a solution that is 0.30 M in both Sr^{2+} and Pb^{2+}. Assuming no volume change, what will be the $\left[\mathrm{Pb}^{2+}\right]$ at the point at which SrSO_{4} just begins to precipitate at $25^{\circ} \mathrm{C}$? K_{sp} for $\mathrm{SrSO}_{4}=2.8 \times 10^{-7}$ and for $\mathrm{PbSO}_{4}=1.8 \times 10^{-8}$.
(a) 0.24 M
(b) 0.16 M
(c) 0.30 M
(d) 0.019 M (e) 0.040 M

ANSWERS: $1(\mathrm{e}), 2(\mathrm{~d}), 3(\mathrm{pH}=5.11), 4\left(K_{\mathrm{sp}}=\left[\mathrm{Mn}^{3+}\right)\left[\mathrm{OH}^{-}\right)^{3}\right), 5\left(\mathrm{Mn}(\mathrm{OH})_{3}\right.$ first, $1 \times 10^{-18} \mathrm{M} \mathrm{Mn}^{3+}$), 6 (c), 7 (b), 8 (b), 9 (b), 10 (e), 11 (c), 12 (b), 13 (d), 14 (b), 15 (c), 16 (c), 17 (d)

