CHEMISTRY 101 FINAL FORM D

SPRING 2010 DR. KEENEY-KENNICUTT

Directions: (1) Put your name on PART 1 and your name and signature on PART 2 of the exam where indicated.

- (2) Sign the Aggie Code on PART 2 of this exam.
- (3) Each multiple choice question is actually 2 questions on your scanning sheet. If you are sure of an answer, **put the same answer down for both questions** for 5 pts. If you cannot decide between two answers, put your BEST answer down for the ODD/FIRST question for 3 pts and your SECOND BEST answer down for the EVEN/SECOND question for 2 pts. If there is an ambiguous multiple choice question, use the last page to explain your answer.
- (4) Do NOT write on the envelope.
- (5) When finished, put both parts of the exam in the envelope with the scanning sheet. You can leave during announced times.
- (6) There are a total of 64 questions (34 actual questions with 2 pts extra credit). Total value is 170 + 2 points.

PART 1

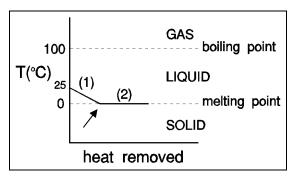
- **1&2.** The species H₂O can be described by all of these terms EXCEPT:
 - (a) bent molecular geometry
 (b) sp³ hybridized
 (c) tetrahedral electronic geometry
 (d) contains polar covalent bonds
 (e) nonpolar
- **3&4.** Which of the following is a non-polar covalent bond?
 - (a) P-As (b) H-Cl (c) O-S (d) Na-Ca (e) Te-I
- 5&6. Which compound cannot exhibit London forces?
 - (a) CH_4 (b) HCl (c) C_2H_2 (d) CaS (e) OF_2

7&8. The compound CH_3 -C=C-H, has _____ pi bonds and _____ sigma bonds.

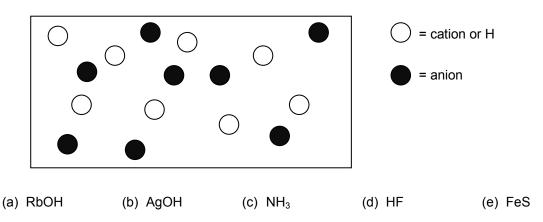
(a) 3,5 (b) 2,6 (c) 2,3 (d) 3,2 (e) another combination

9&10. Which ground state electronic configuration is NOT correct?

- (a) Mn [Ar] $3d^5 4s^2$
- (b) Na $1s^2 2s^2 2p^6 3s^1$
- (c) Cu [Ar] 3d¹⁰ 4s¹
- (d) As [Ar] $3d^{10} 4s^2 4p^3$


- (e) Bi [Xe] $6s^2 5d^{10} 6p^3$
- **11&12.** You can find 4 atoms of oxygen in
 - (a) 1 mole of K₂SO₄
 - (b) 4 moles of Na₂O
 - (c) 1 formula unit of Na₃PO₄
 - (d) 2 molecules of H₂O
 - (e) 2 grams of Ba(OH)₂

13&14. How many electrons can be found in an ion of the isotope ⁹⁰Sr²⁺?


(a) 90 (b) 88 (c) 40 (d) 52 (e) 36

15&16. Consider this illustration. Which statement is FALSE?

- (a) The substance may be water.
- (b) For Step 1: heat = Sp.Ht. x mass x ΔT
- (c) For Step 2: heat = Ht. of fusion x mass
- (d) The substance is being cooled to a solid at its freezing point.
- (e) At the intersection where Step 1 and Step 2 meet, the substance is a solid.

17&18.Here is a particle view of a substance in water. Pick the compound that is represented by this particle view.

19&20. For which of the following reactions would the ΔH° for the reaction be labeled ΔH_{f}° ?

(a)
$$1/2 N_2 O(g) + 1/4 O_2(g) \rightarrow NO(g)$$

- (b) $PCI_3(g)$ + 1/2 $O_2(g) \rightarrow POCI_3(g)$
- (c) Al(s) + $3/2 O_2(g) + 3/2 H_2(g) \rightarrow Al(OH)_3(s)$
- (d) CaO(s) + SO₂(g) \rightarrow CaSO₃(s)
- (e) The ΔH° for all the reactions would be labeled ΔH_{f}° .
- **21&22.** Which of the following is the CORRECT Lewis structure for bromous acid showing all the valence electrons?
 - $(a) : \overset{\cdot}{\odot} : \overset{\cdot}{\odot} : \overset{\cdot}{B} : \overset{\cdot}{B} : \overset{\cdot}{\Theta} : \overset{\cdot}{\Theta} : \overset{\cdot}{B} : \overset{\cdot}{B} : \overset{\cdot}{\Theta} : \overset{\cdot}{B} : \overset{\cdot}{B}$

23&24. Which statement is WRONG?

- (a) Br⁻ and Cl⁻ are isoelectronic with each other.
- (b) Oxygen has a more negative electron affinity than carbon.
- (c) A total of 6 electrons can have quantum numbers, n=3 and ℓ =1.
- (d) A magnesium cation is smaller than a magnesium atom.
- (e) A carbon atom is smaller than a silicon atom.
- **25&26.** If you have 3 moles of calcium, how many moles of oxygen atoms are also present in your sample of Ca(NO₃)₂·6H₂O?
 - (a) 12 (b) 36 (c) 15 (d) 21 (e) 33
- **27&28.**The correct ranking of these substances: CaBr₂ CO₂ CH₃COOH SeF₄ according to their boiling points from lowest boiling point to highest boiling point is:
 - (a) $CO_2 < SeF_4 < CH_3COOH < CaBr_2$
 - (b) $CO_2 < CH_3COOH < CaBr_2 < SeF_4$
 - (c) $CH_3COOH < SeF_4 < CO_2 < CaBr_2$
 - (d) $CaBr_2 < CO_2 < SeF_4 < CH_3COOHH$
 - (e) $CH_3COOH < CaBr_2 < SeF_4 < CO_2$
- **29&30.** The correct formula for sodium sulfite is:

(a) $NaSO_4$ (b) Na_2SO_4 (c) $NaSO_3$ (d) Na_2SO_3 (e) Na_2S

31&32. Assign oxidation numbers to each element in this reaction. The reducing agent is:

 $16 \text{ H}^{*} \ + \ 2 \text{ MnO}_{4}^{-} \ + \ 10 \text{ SO}_{4}^{\ 2-} \ \rightarrow \ 2 \text{ Mn}^{2+} \ + \ 5 \text{ S}_{2} \text{O}_{8}^{\ 2-} \ + \ 8 \text{ H}_{2} \text{O}$

(a) H^+ (b) MnO_4^- (c) SO_4^{2-} (d) Mn^{2+} (e) $S_2O_8^{2-}$

33&34. Consider this acid-base net ionic equation: $2H^{+}(aq) + Cu(OH)_{2}(s) \rightarrow Cu^{2+}(aq) + 2H_{2}O(\ell)$ Which of the following statements is <u>TRUE</u>?

- (a) The acid is a weak acid.
- (b) The spectator ion could have been a NO_3^- ion.
- (c) The base is a weak electrolyte.
- (d) The salt is insoluble.
- (e) The reaction is called a precipitation reaction.

35&36. A sample of SO₃ gas begins to exhibit non-ideal behavior near which temperature?

- (a) 0 K
 (b) 273 K
 (c) melting point

 (d) boiling point
 (e) 22.4 °C
 (c) melting point
- **37&38.** An unknown organic compound composed of carbon, hydrogen and oxygen was analyzed and found to be 46.15% C, 7.74% H with the rest being oxygen. Which of the following represents the correct empirical formula for the compound?
 - (a) CH_3O (b) C_2H_3O (c) $C_4H_8O_3$ (d) CH_2O (e) $C_2H_5O_2$

39&40.	You are given the data	for all the isotopes of the	newly discovered element	, Aggiedaddium:

Abundance (%)	Isotopic Mass (amu)
10	122.00
50	125.00
40	128.00

The atomic weight of Aggiedaddium (in amu) is:

(a) 125.9	(b) 125.0	(c) 125.6	(d) 124.7	(e) 126.3
-----------	-----------	-----------	-----------	-----------

41&42. What is the density of the gas XeF_6 (MW = 245.3 g/mol) at STP?

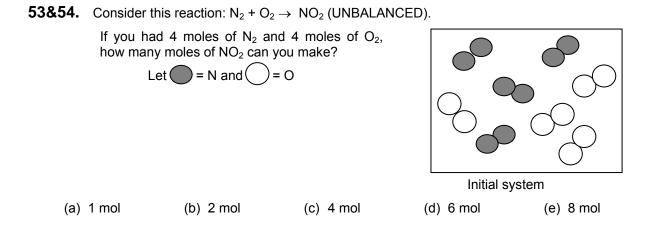
(a)	22.4 g/L	(b) 0.091 g/L	(c) 1.00 g/L	(d) 11.0 g/L	(e) 2.55 g/L
()		()	(-)	()	(-)

43&44. Given the heats of reaction below, calculate ΔH° for the reaction: 2NO(g) + 1/2 O₂(g) \rightarrow N₂O₃(g)

	$\begin{array}{rl} N_2(g) \ + \ O_2(g) \ \rightarrow \\ 2N_2(g) \ + \ 3O_2(g) \end{array}$		$\Delta H^{\circ} = +180.5$ $\Delta H^{\circ} = +167.4$	
(a) +91.8 kJ	(b) -264.2 kJ	(c) +264.2 kJ	(d) –6.55 kJ	(e) –96.8 kJ

45&46. Using bond energies, calculate ΔH_{rxn} for the reaction: 2 IF₃(g) \rightarrow 3 F₂(g) + I₂(g)

where $D_{I-F} = +278 \text{ kJ/mol}$ $D_{F-F} = +158 \text{ kJ/mol}$ $D_{I-I} = +151 \text{ kJ/mol}$ (a) +845 kJ (b) +1043 kJ (c) +410 kJ (d) +665 kJ (e) +721 kJ


47&48. What mass of SiF₄ (FW=104.1 g/mol) could be produced by the reaction of 15 g of HF (FW=20.0 g/mol) with an excess of SiO₂? The <u>unbalanced</u> equation for the reaction is:

	SiO ₂ +	$HF \rightarrow SiF_4 + F$	I ₂ O (UNBALAI	NCED)
(a) 19.5 g	(b) 1.21 g	(c) 3.02 g	(d) 10.4 g	(e) 15.0 g

49&50.	If the pH of a	an HClO ₄ solution i	is 2.94, what is the	concentration of H	ICIO ₄ ?
(a)	0.47 M	(b) 0.0011 M	(c) 1.08 M	(d) 0.053 M	(e) 0.34 M

51&52. A 13.8 g chunk of zinc is heated to 98.8°C. It is then immersed in 45.0 g water originally at 25.0°C. The final temperature of both the iron and the water is 27.1°C. Calculate the specific heat of iron. The specific heat of water is 4.18 J/g•°C.

(a) $0.31 \text{ J/g}^{\circ}\text{C}$ (b) $0.40 \text{ J/g}^{\circ}\text{C}$ (c) $0.15 \text{ J/g}^{\circ}\text{C}$ (d) $0.21 \text{ J/g}^{\circ}\text{C}$ (e) $0.67 \text{ J/g}^{\circ}\text{C}$

55&56. What is the percentage yield of elemental sulfur if 7.54 grams of sulfur are obtained from the reaction of 6.00 grams of SO₂ with an excess of H₂S?

		$2 H_2 S + SO_2 -$	> 2 H ₂ O + 3 S	
(a) 76.1%	(b) 79.4%	(c) 83.8%	(d) 88.4%	(e) 91.4%

57&58. Calculate the standard enthalpy change associated with the reaction below as written:

 $2 \text{ NH}_4 \text{NO}_3(s) \rightarrow 2 \text{N}_2(g) + \text{O}_2(g) + 4 \text{H}_2 \text{O}(g)$

		Compound		ΔH^{o}_{f} (kJ/mol)	
		Ammonium nitrate (s)		-366	
		Water (g)		-242	
(a) +124 kJ	(b) –6	608 kJ (c)	+236 k.	J (d) –236 kJ	(e) -124 kJ

59&60. You have 7.50 g of liquid cyclohexanol ($C_6H_{11}OH - FW=100.1$ g/mol). How many atoms of hydrogen atoms do you have?

	F A A A 2 ³	(1) 0 0 (10^{23})	$() 0 0 40^{22}$	(1) (0) (0)	$() 0 0 40^{23}$
(a)) 5.4 x 10 ²³	(b) 3.2×10^{23}	(c) 2.9 x 10 ²²	(d) 4.3 x 10 ²²	(e) 6.0 x 10 ²³
(Ω,	0.1 / 10		(0) = 0 / 10		(0) 0.0 / 10

(Please Block Print legibly)

PART 2

Please read and sign: "On my honor, as an Aggie, I have neither given nor received unauthorized aid on this exam."

(4 pts) 61. (a) How much faster will helium gas effuse through a tiny hole than sulfur trioxide gas?

- (1 pt) (b) Why? Does the reason involve the size of the hole?
- (5 pts) **62.** Gold can be dissolved from gold-bearing ore by treating the rock with sodium cyanide in the presence of oxygen gas, according to:

 $4 \text{Au} + 8 \text{NaCN} + \text{O}_2 + 2 \text{H}_2\text{O} \rightarrow 4 \text{NaAu}(\text{CN})_2 + 4 \text{NaOH}$

If 20.0 mL of 0.0750 M NaCN are required to react with all the gold in 1550 g of rock, what is the percentage of gold in the ore sample?

OVER→

(5 pts) **63.** What total gas pressure measured at 600° C in a 43.0 L container, would result from the complete combustion of 2.20 g of hexene, C₆H₁₂ (MW = 84.2 g/mol) with a stoichiometric amount of oxygen gas according to:

 $C_6H_{12}(g) + \ 9O_2(g) \ \rightarrow \ 6CO_2(g) \ + \ 6H_2O(g)$

(5 pts) **64.** Draw a typical phase diagram.

- (a) Label the axes and the areas where solids, liquids and gases can be found.
- (b) Label the triple point and the melting curve.

Extra credit: (1 pt) Cr forms a ______ solid. (1 pt) NaCl forms a _____ solid.

SCRAP PAPER OR COMMENTS ON EXAM

CHEMISTRY 101	Spring 2010	NAME
FINAL Form D		