Directions: (1) Put your name on PART 1 and your name and signature on PART 2 of the exam where indicated.
(2) Sign the Aggie Code on PART 2 of this exam.
(3) Each multiple choice question is actually 2 questions on your scanning sheet. If you are sure of an answer, put the same answer down for both questions for 5 pts. If you cannot decide between two answers, put your BEST answer down for the ODD/FIRST question for 3 pts and your SECOND BEST answer down for the EVEN/SECOND question for 2 pts. If there is an ambiguous multiple choice question, use the last page to explain your answer.
(4) Do NOT write on the envelope.
(5) When finished, put both parts of the exam in the envelope with the scanning sheet. You can leave during announced times.
(6) There are a total of 64 questions (34 actual questions with 2 pts extra credit). Total value is $170+2$ points.

PART 1

1\&2. The correct formula for aluminum sulfite is:
(a) $\mathrm{Al}_{2} \mathrm{~S}_{3}$
(b) AlSO_{4}
(c) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(d) AlSO_{3}
(e) $\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}$

3\&4. Consider this illustration. Which statement is FALSE?
(a) At the intersection where Step 1 and Step 2 meet, the substance is a solid.
(b) For Step 2: heat $=\mathrm{Ht}$. of fusion x mass
(c) The substance may be water.
(d) For Step 1: heat $=$ Sp.Ht. x mass $\mathrm{x} \Delta \mathrm{T}$
(e) The substance is being cooled to a solid at its freezing
 point.

5\&6. A sample of $\mathrm{H}_{2} \mathrm{O}$ gas begins to exhibit non-ideal behavior near which temperature?
(a) boiling point
(b) melting point
(c) $22.4{ }^{\circ} \mathrm{C}$
(d) 0 K
(e) 273 K

7\&8. You can find 2 atoms of sulfur in
(a) 2 moles of NaOH
(b) 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$
(c) 1 molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}$
(d) 2 formula units of BaS
(e) 2 grams of S

9\&10. Here is a particle view of a substance in water. Pick the compound that is represented by this particle view.

(a) HF
(b) CuS
(c) KOH
(d) NH_{3}
(e) AgOH

11\&12. For which of the following reactions would the ΔH° for the reaction be labeled $\Delta H_{f}{ }^{\circ}$?
(1) $\mathrm{Mg}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{s})$
(2) $\mathrm{BaO}(\mathrm{s})+\mathrm{SO}_{3}(\mathrm{~g}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$
(3) $\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
(4) $1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Br}_{2}(\ell) \rightarrow \mathrm{HBr}(\mathrm{g})$
(5) $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{C}(\mathrm{s}$, graphite $)+2 \mathrm{H}_{2}(\mathrm{~g})$
(a) 1 only
(b) 1 and 2
(c) 1 and 4
(d) 3 and 4
(e) 1 and 5

13\&14. The species NH_{3} can be described by all of these terms EXCEPT:
(a) pyramidal molecular geometry
(b) nonpolar
(d) tetrahedral electronic geometry
(e) sp^{3} hybridized
(c) contains polar covalent bonds

15\&16. Which ground state electronic configuration is NOT correct?
(a) $\mathrm{Na} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
(b) As $\quad \mathrm{Ar}] 3 d^{10} 4 s^{2} 4 p^{3}$
(c) $\mathrm{Cu} \quad[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$
(d) $\mathrm{Bi} \quad[\mathrm{Xe}] 6 \mathrm{~s}^{2} 5 \mathrm{~d}^{10} 6 p^{3}$
(e) $\mathrm{Mn} \quad[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}$

17\&18. The compound $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$, has \qquad sigma bonds and \qquad pi bonds.
(a) 6,2
(b) 3,2
(c) 2,3
(d) 5,3
(e) another combination

19\&20. Which compound cannot exhibit London interaction?
(a) NF_{3}
(b) CO_{2}
(c) $\mathrm{CH}_{3} \mathrm{OH}$
(d) Cl_{2}
(e) BaH_{2}

21\&22. Assign oxidation numbers to each element in this reaction. The oxidizing agent is:

$$
16 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-}+10 \mathrm{SO}_{4}{ }^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}+8 \mathrm{H}_{2} \mathrm{O}
$$

(a) H^{+}
(b) MnO_{4}^{-}
(c) $\mathrm{SO}_{4}{ }^{2-}$
(d) Mn^{2+}
(e) $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$

23\&24. Which of the following is the CORRECT Lewis structure for chlorous acid showing all the valence electrons?
(a) $\mathrm{H}: \ddot{\mathrm{O}}: \ddot{\mathrm{C}}, \ddot{\mathrm{O}}:$
(b) $: \ddot{\mathrm{O}} \stackrel{\mathrm{H}}{\mathrm{C}}: \ddot{\mathrm{O}}:$
(c) $\mathrm{H}: \ddot{\mathrm{O}}: \ddot{\mathrm{Cl}}:: \ddot{\mathrm{O}}$
(d) $\mathrm{H}: \ddot{\mathrm{O}}:: \ddot{\mathrm{O}}: \ddot{\mathrm{Cl}}:$
(e) $: \ddot{\mathrm{O}}:: \ddot{\mathrm{O}}: \ddot{\mathrm{C}}: \mathrm{H}$

25\&26. The correct ranking of these substances: $\mathrm{FeCl}_{2} \quad \mathrm{~N}_{2} \quad \mathrm{CH}_{3} \mathrm{OH} \quad \mathrm{NF}_{3}$ according to their boiling points from lowest boiling point to highest boiling point is:
(a) $\mathrm{N}_{2}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{FeCl}_{2}<\mathrm{NF}_{3}$
(b) $\mathrm{FeCl}_{2}<\mathrm{N}_{2}<\mathrm{NF}_{3}<\mathrm{CH}_{3} \mathrm{OH}$
(c) $\mathrm{CH}_{3} \mathrm{OH}<\mathrm{NF}_{3}<\mathrm{N}_{2}<\mathrm{FeCl}_{2}$
(d) $\mathrm{N}_{2}<\mathrm{NF}_{3}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{FeCl}_{2}$
(e) $\mathrm{CH}_{3} \mathrm{OH}<\mathrm{FeCl}_{2}<\mathrm{NF}_{3}<\mathrm{N}_{2}$

27\&28. Which of the following is a non-polar covalent bond?
(a) O-F
(b) $\mathrm{H}-\mathrm{Cl}$
(c) C-I
(d) $\mathrm{Na}-\mathrm{Ca}$
(e) $\mathrm{Te}-\mathrm{I}$

29\&30. If you have 3 moles of sodium, how many moles of hydrogen atoms are also present in your sample of sodium aluminum sulfate, $\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$?
(a) 12
(b) 24
(c) 72
(d) 6
(e) 36

31\&32. Which statement is WRONG?
(a) A total of 10 electrons can have quantum numbers, $\mathrm{n}=4$ and $\ell=2$.
(b) A magnesium atom is smaller than a sodium atom.
(c) The sodium cation is smaller than the sodium atom.
(d) Br^{-}and Cl^{-}are isoelectronic with each other.
(e) Sodium has a less negative electron affinity than fluorine.

33\&34. How many electrons can be found in an ion of the isotope ${ }^{31} \mathrm{P}^{3-}$?
(a) 31
(b) 28
(c) 34
(d) 12
(e) 18

35\&36. Consider this acid-base net ionic equation: $\mathrm{HBrO}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{BrO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$ Which of the following statements is TRUE?
(a) The acid is a strong acid.
(b) The base is insoluble.
(c) The reaction is called a precipitation reaction.
(d) The spectator ion could have been Na^{+}ion.
(e) The salt is a weak electrolyte.

37\&38. You are given the data for all the isotopes of the newly discovered element, Aggiemomium:

Abundance (\%)	Isotopic Mass (amu)
30.00	143.00
60.00	145.00
10.00	149.00

What is the atomic weight of Aggiemomium (in amu)?
(a) 145.5
(b) 146.0
(c) 145.2
(d) 145.0
(e) 144.8

39\&40. Consider this reaction: $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}$ (UNBALANCED).
If you had 2 moles of N_{2} and 6 moles of O_{2}, how many moles of NO_{2} can you make?

Initial system
(a) 2 mol
(b) 4 mol
(c) 5 mol
(d) 6 mol
(e) 8 mol

41\&42. What mass of O_{2} ($\mathrm{FW}=32.0 \mathrm{~g} / \mathrm{mol}$) could be produced by the decomposition of 25 g of KIO_{3} ($\mathrm{FW}=214 \mathrm{~g} / \mathrm{mol}$)? The unbalanced equation for the reaction is:

$$
\mathrm{KIO}_{3} \rightarrow \mathrm{KI}+\mathrm{O}_{2} \quad \text { (UNBALANCED) }
$$

(a) 6.7 g
(b) 4.1 g
(c) 2.5 g
(d) 3.5 g
(e) 5.6 g

43\&44. An unknown organic compound composed of carbon, hydrogen and oxygen was analyzed and found to be $50.84 \% \mathrm{C}, 8.53 \% \mathrm{H}$ and the rest being oxygen. Which of the following represents the correct empirical formula for the compound?
(a) $\mathrm{CH}_{2} \mathrm{O}$
(b) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$
(c) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}$
(d) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
(e) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}$

45\&46. What is the density of the gas $\mathrm{SO}_{2}(\mathrm{MW}=64.1 \mathrm{~g} / \mathrm{mol})$ at STP?
(a) $22.4 \mathrm{~g} / \mathrm{L}$
(b) $2.86 \mathrm{~g} / \mathrm{L}$
(c) $0.33 \mathrm{~g} / \mathrm{L}$
(d) $5.11 \mathrm{~g} / \mathrm{L}$
(e) $1.14 \mathrm{~g} / \mathrm{L}$

47\&48. Using bond energies, calculate $\Delta \mathrm{H}_{\mathrm{rx}}$ for the reaction: $\mathrm{Br}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrF}_{3}(\mathrm{~g})$

$$
\text { where } \quad \begin{array}{ll}
& \mathrm{D}_{\mathrm{Br}-\mathrm{Br}}=+192 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{D}_{\mathrm{F}-\mathrm{F}}=+158 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{D}_{\mathrm{Br}-\mathrm{F}}=+197 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

(a) -516 kJ
(b) -410 kJ
(c) -611 kJ
(d) -665 kJ
(e) -720 kJ

49\&50. A 588 g chunk of iron is heated to $97.5^{\circ} \mathrm{C}$. It is then immersed in 247 grams of water originally at $20.7^{\circ} \mathrm{C}$. The final temperature of both the iron and the water is $36.2^{\circ} \mathrm{C}$. Calculate the specific heat of iron. The specific heat of water is $4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
(a) $0.444 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
(b) $0.688 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
(c) $0.590 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
(d) $0.211 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
(e) $0.152 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

51\&52. If the pH of an HClO_{3} solution is 1.64 , what is the concentration of HClO_{3} ?
(a) 0.21 M
(b) 0.49 M
(c) 0.19 M
(d) 0.023 M
(e) 0.61 M

53\&54. What is the percentage yield of elemental sulfur if 3.00 grams of sulfur are obtained from the reaction of 4.00 grams of $\mathrm{H}_{2} \mathrm{~S}$ with an excess of SO_{2} ?

$$
2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~S}
$$

(a) 53.2%
(b) 48.9%
(c) 83.7%
(d) 28.4%
(e) 45.6%

55\&56. Given the heats of reaction below, calculate ΔH° for the reaction: $\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})$

$$
\begin{array}{ll}
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-297 \mathrm{~kJ} \\
2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-792 \mathrm{~kJ}
\end{array}
$$

(a) +297 kJ
(b) -693 kJ
(c) -99 kJ
(d) +693 kJ
(e) +99 kJ

57\&58. You have 5.0 g of liquid ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-\mathrm{FW}=46 \mathrm{~g} / \mathrm{mol}\right)$. How many hydrogen atoms do you have?
(a) 6.7×10^{22}
(b) 3.2×10^{23}
(c) 3.9×10^{23}
(d) 4.1×10^{21}
(e) 6.0×10^{23}

59\&60. Calculate the standard enthalpy change associated with the reaction below as written:

$$
2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Compound	$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$
Ammonium nitrate (s)	-366
Water (g)	-242

(a) +236 kJ
(b) -236 kJ
(c) -608 kJ
(d) +124 kJ
(e) -124 kJ

CHEMISTRY 101

\qquad

PART 2

Please read and sign: "On my honor, as an Aggie, I have neither given nor received unauthorized aid on this exam."
(5 pts) 61. Nitroglycerin $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}-\mathrm{MW}=227.1 \mathrm{~g} / \mathrm{mol}\right)$ is a powerful explosive. Its decomposition can be represented by

$$
4 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}(\mathrm{~s}) \rightarrow 6 \mathrm{~N}_{2}(\mathrm{~g})+12 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

If 5.00 g of nitroglycerine were detonated at $300^{\circ} \mathrm{C}$, how much total pressure would be created in a 1.00 L steel container?
(5 pts) 62. Draw a typical phase diagram.
(a) Label the axes and the areas where solids, liquids and gases can be found.
(b) Label the triple point and the melting curve.
(5 pts) 63. The iron in a 5.675 g sample of iron ore was first converted to Fe^{2+} ions, then titrated with 12.42 mL of $0.1467 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ according to the following balanced net ionic equation:

$$
6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

What is the percentage of Fe in the ore sample?
(4 pts) 64. (a) How much faster will hydrogen gas effuse through a tiny hole than xenon tetrafluoride gas?
(1 pt) (b) Why? Does the reason involve the size of the hole?

Extra credit:
(1 pt) $\mathrm{H}_{2} \mathrm{O}$ forms a \qquad solid.
(1 pt) Fe forms a \qquad solid.

SCRAP PAPER OR COMMENTS ON EXAM

CHEMISTRY 101 FINAL Form C	Spring 2010	NAME

