CHEMISTRY 101 FINAL FORM B

SPRING 2010 DR. KEENEY-KENNICUTT

Directions: (1) Put your name on PART 1 and your name and signature on PART 2 of the exam where indicated.

- (2) Sign the Aggie Code on PART 2 of this exam.
- (3) Each multiple choice question is actually 2 questions on your scanning sheet. If you are sure of an answer, **put the same answer down for both questions** for 5 pts. If you cannot decide between two answers, put your BEST answer down for the ODD/FIRST question for 3 pts and your SECOND BEST answer down for the EVEN/SECOND question for 2 pts. If there is an ambiguous multiple choice question, use the last page to explain your answer.
- (4) Do NOT write on the envelope.
- (5) When finished, put both parts of the exam in the envelope with the scanning sheet. You can leave during announced times.
- (6) There are a total of 64 questions (34 actual questions with 2 pts extra credit). Total value is 170 + 2 points.

PART 1

1&2.	Which of the f	ollowing is a non-	-polar covalent bo	ond?			
	(a) Na-Ca	(b) Te-I	(c) P-As	(d) H-Cl	(e) O-S	3	
3&4.	Which of the f	following stateme	nts is/are true ab	out ⁵⁵ Mn ⁴⁺ ?			
	(1) this ion ha	s 25 protons	(2) this ion has	25 neutrons	(3) this ion ha	s 29 electrons	
	(a) 1 only	(b) 1 and 3 c	only (c) 1 and	2 only (d) 2	and 3 only	(e) 3 only	
5&6.			clear crystals tha conduct electricity				
	(a) molecular	(b) metallic	(c) polar	(d) id	onic	(e) covalent	

7&8. In the following drawing, the white spheres represent anions and the black spheres represent cations. The following drawing of an ionic compound is a representation of which compound?

(a) NaBr

(a) 3

- (b) $(NH_4)_2CO_3$
- (c) $Ba(BrO_3)_2$ (d) $AlBr_3$
- **9&10.** The correct Lewis dot structure of BF₃ uses a total of ______ valence electrons.
- (e) $Ca_3(PO_4)_2$

- (b) 6
- (c) 8
- (d) 24
- (e) 32

11&12. Give the ions present and their numbers that appear in the correct formula for iron(II) sulfate.

- (a) 2 Fe^{2+} and 2 SO_4^{2-}
- (b) 1 Fe^{2+} and 1 SO_4^{2-} (e) 3 Fe^{3+} and 2 SO_4^{2-}
- (c) 3 Fe^{2+} and 2 SO_4^{2-}

- (d) 2 Fe³⁺ and 3 SO₄²⁻

13&14. Which ground state electronic configuration is **NOT** correct?

- (a) Mg $1s^2 2s^2 2p^6 3s^2$
- (b) As [Ar] $3d^{10} 4s^2 4p^3$
- (c) Cu [Ar] 3d¹⁰ 4s¹
- (d) Po [Xe] 6s² 5d¹⁰ 6p⁴
- (e) Ni [Ar] 3d⁸ 4s²

15&16. Consider the diagram when determining the CORRECT statement.

- (a) In a closed container, the vapor is in equilibrium with the liquid.
- (b) At the top of a very high mountain, the boiling point is about 112°C.
- (c) The vapor pressure is always equal to the atmospheric barometric pressure.
- (d) The boiling point of Compound B is always equal to or greater than about 112°C.
- (e) Compound B's vapor pressure is independent of the temperature.

17&18. Which element is paramagnetic with 2 unpaired electrons?

- (a) Mg
- (b) S
- (c) Na
- (d) Al
- (e) CI

19&20. Which one of the following statements about gases is FALSE?

- (a) The volume of the molecules of a gas is very small compared to the total volume in which the gas is contained.
- (b) Gases consist of large numbers of particles in rapid random motion.
- (c) The average kinetic energy of the molecules is proportional to the absolute temperature.
- (d) The attractive forces between the molecules of a gas become significant only at high temperatures and low pressures.
- (e) The average kinetic energies of ideal gases are different at different temperatures.

21&22. Determine the oxidation number of carbon in the carbonate ion, CO_3^{2-} .

- (a) +2
- (b) +3
- (c) +4
- (d) +6
- (e) +8

23&24. Which one of the following statements about this phase diagram is FALSE?

- (a) At Point 2, the solid phase is in equilibrium with gas phase.
- (b) Point 1 is called the triple point.
- (c) At STP, the substance is a liquid.
- (d) At Point 4, the liquid phase is in equilibrium with the solid phase.
- (e) When the conditions change from Point 5 to Point 3, the temperature stays constant and the pressure changes.

25&26. One formula unit of Li₃PO₄ contains:

- (a) Avogadro's number of phosphorus atoms
- (b) 3 ions of Li⁺
- (c) 4 moles of PO₄³- anions
- (d) 1 mole of Li₃PO₄
- (e) 31 g of P

27&28. Balance the equation with the SMALLEST WHOLE NUMBER COEFFICIENTS possible. Choose the number that is the SUM of the coefficients in the balanced equation. Don't forget coefficients of one.

$$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$$

- (a) 21
- (b) 42
- (c) 19
- (d) 11
- (e) 10

(a) tetrahedral		(b) square plan	ar	(c) trigonal bipyramidal
(d) T-shaped		(e) see-saw		
24.822 1.5 1.11	-			
31&32. In Bronsted-L	owry Theory of acid	is and bases, an ac	d is defined as:	
(a) a water-forme	er (b) a hydroxide don	or (c)	an electron-pair acceptor
(d) a proton dono	or ((e) a proton accepto	or	
33&34 The following	set of A quantum n	imbers: $n = A \ell = 3$	$0 \text{ m}_{i} = -1 \text{ m}_{i} = -1/2 \text{ m}_{i}$	could be an appropriate set for
the last electron to				ception to the normal filling
rule.)				
(a) Zr	(b) V	(c) Ca	(d) Se	(e) Kr
25920 0 11 111			NII/	011 000=() 11 0(4)
		-)H(aq) + OH (aq) →	$CH_3COO^-(aq) + H_2O(\ell)$
(a) The acid is a	wing statements is <u> </u>	IKUE!		
(b) The base is in	<u>-</u>			
` '	ion could have bee	en a NO₃¯ ion.		
(d) The salt is a v				
(e) The spectator	ion could have bee	en a Na⁺ ion.		
37&38. The formula v	veight of (NH ₄) ₂ SO ₄	is:		
(a) 132 amu	(b) 63 amu	(c) 118 amu	(d) 114 amu	(a) 86 amu
(a) 132 amu	(b) 63 amu	(c) TTO alliu	(u) 114 aiilu	(e) 86 amu

29&30. The ionic geometry of BrF_4^+ is:

© Keeney-Kennicutt, 2010

39&40.	If the pH of a solution is 3.56,	what is the molarity of H ⁺	ions in the solution?
--------	----------------------------------	--	-----------------------

- (a) 0.55 M
- (b) 1.27 M
- (c) 3.56 M
- (d) 0.028 M
- (e) 2.8 x 10⁻⁴ M

41&42. A sample of CO₂ occupies 3.70 liters at 20°C and 1.50 atm. What volume does it occupy at STP?

- (a) 3.24 L
- (b) 5.17 L
- (c) 75.0 L
- (d) 16.3 L
- (e) 40.2 L

43&44. An oxide of lead contains 89.62 % Pb by mass. The empirical formula is:

- (a) PbO₂
- (b) Pb_2O_3
- (c) Pb_3O_4
- (d) PbO
- (e) PbO₃

45&46. If a system loses 20 J of heat and does 30 J of work on the surroundings, the change in internal energy

- (a) -50 J
- (b) +50 J
- (c) -10 J
- (d) +10 J
- (e) 0 J

47&48. Using bond energies, calculate ΔH_{rxn} for the reaction: H–C=C–H(g) \rightarrow 2C(g) + H₂(g)

where

$$\Delta_{\text{C-H}}$$
 = +413 kJ/mol

$$\Delta_{C=C}$$
 = +835 kJ/mol

$$\Delta_{\text{H-H}}$$
 = +436 kJ/mol

- (a) −14 kJ
- (b) +32 kJ
- (c) +1684 kJ (d) -215 kJ
- (e) +1225 kJ

49&50. Laughing gas (nitrous oxide or dinitrogen oxide) can be produced by carefully heating ammonium nitrate:

$$NH_4NO_3(s) \rightarrow N_2O(g) + 2H_2O(g)$$

Calculate the standard enthalpy change associated with the decomposition of 1.00 mol of NH₄NO₃(s).

Compound	$\Delta H_{f}^{o}(kJ/mol)$
Ammonium nitrate (s)	-366
Nitrous oxide (g)	+82
Water (g)	-242

- (a) +103 kJ
- (b) -526 kJ
- (c) -36 kJ
- (d) +38 kJ
- (e) -206 kJ

51&52. How many moles of NH₃ will be produced when 8.94 moles of H₂O are also produced according to the following equation?

$$Ce_2O_3 + 6 NH_4CI \rightarrow 2 CeCl_3 + 3 H_2O + 6 NH_3$$

- (a) 4.47 mol
- (b) 13.4 mol
- (c) 6.00 mol
- (d) 17.9 mol
- (e) 2.24 mol

53&54.Consider the reaction:

$$2\; KCrO_2\; +\; 3\; H_2O_2\; +\; 2\; KOH\; \rightarrow\; 2\; K_2CrO_4\; +\; 4\; H_2O$$

FW (g/mol) 123.1 34.0 56.1 194.2 18.0

If 20.0 g of each reactant were used for this reaction, the limiting reactant would be:

- (a) KCrO₂
- (b) H_2O_2
- (c) KOH
- (d) K_2CrO_4
- (e) H_2O

55&56.Given: benzene (C₆H₆): m.p. 5.5°C, b.p. 80.0°C

heat of fusion = 127 J/g at 5.5°C

specific heat (g) = $1.04 \text{ J/g}^{\circ}\text{C}$ heat of vaporization = 395 J/g at 80.°C specific heat $(\ell) = 1.74 \text{ J/g}^{\circ}\text{C}$ specific heat (s) = $0.89 \text{ J/g}^{\circ}\text{C}$

Calculate the amount of heat that must be released to convert 1.00 g of gaseous benzene at 80.0°C to liquid benzene at 6.0°C.

- (a) 395 J
- (b) 131 J
- (c) 114 J
- (d) 524 J
- (e) 439 J

57&58. Naturally occurring thallium (atomic number 81) consists of two isotopes:	202.97	amu
and ²⁰⁵ TI with mass 204.97 amu. What is the percent abundance of ²⁰³ TI?		

- (a) 30%
- (b) 40%
- (c) 50%
- (d) 60%
- (e) 70%

59&60. The valuable solvent, carbon tetrachloride can be produced by the gas phase reaction of chlorine gas with methane.

$$4 \text{ Cl}_2 + \text{ CH}_4 \rightarrow \text{ CCl}_4 + 4 \text{ HCl}$$

- Assuming this process is 87% efficient, how many kilograms of chlorine (FW=70.9 g/mol) are required for the production of 35 kg of CCl_4 (153.8 g/mol), assuming excess CH_4 ?
- (a) 56 kg
- (b) 18 kg
- (c) 67 kg
- (d) 83 kg
- (e) 74 kg

CHEMISTRY	1	0	1
-----------	---	---	---

Spring 2010

NAME	

FINAL Form B

(Please Block Print legibly)

PART 2

Please read and sign: "On my honor, as an Aggie, I have neither given nor received unauthorized aid on this exam."

(5 pts) **61.** A 3.00 g sample of KClO₃ decomposes to yield oxygen at 25.0°C and 735 torr. What volume of oxygen is collected?

 $2KCIO_3 \rightarrow 2KCI + 3O_2$

(3 pts) **62.** (a) Put the following compounds in order of increasing boiling point: H_2O KBr Kr HBr.

(3 pts) (b) What are the interparticle forces in operation for each compound?

OVER→

(5 pts) **63.** How many milliliters of 0.500 M HNO₃ would be required to react with 1.00 g of Al₂O₃? Al₂O₃ + HNO₃ \rightarrow Al(NO₃)₃ + H₂O (UNBALANCED)

(4 pts) **64** How many sigma and pi bonds are in the following compound?

Extra Credit (2 pts) What is the hybridization of the carbon atom identified by the arrow?

SCRAP PAPER OR COMMENTS ON EXAM

MISTRY 101 Spring 2010 NAM Form B

© Keeney-Kennicutt, 2010