Directions: (1) Put your name on PART 1 and your name and signature on PART 2 of the exam where indicated.
(2) Sign the Aggie Code on PART 2 of this exam.
(3) Each multiple choice question is actually 2 questions on your scanning sheet. If you are sure of an answer, put the same answer down for both questions for 5 pts. If you cannot decide between two answers, put your BEST answer down for the ODD/FIRST question for 3 pts and your SECOND BEST answer down for the EVEN/SECOND question for 2 pts. If there is an ambiguous multiple choice question, use the last page to explain your answer.
(4) Do NOT write on the envelope.
(5) When finished, put both parts of the exam in the envelope with the scanning sheet. You can leave during announced times.
(6) There are a total of 64 questions (34 actual questions with 2 pts extra credit). Total value is $170+2$ points.

PART 1

1\&2. Which of the following is a non-polar covalent bond?
(a) $\mathrm{Na}-\mathrm{Ca}$
(b) $\mathrm{Te}-\mathrm{I}$
(c) P-As
(d) $\mathrm{H}-\mathrm{Cl}$
(e) O-S

3\&4. Which of the following statements is/are true about ${ }^{55} \mathrm{Mn}^{4+}$?
(1) this ion has 25 protons
(2) this ion has 25 neutrons
(3) this ion has 29 electrons
(a) 1 only
(b) 1 and 3 only
(c) 1 and 2 only
(d) 2 and 3 only
(e) 3 only

5\&6. The compound BaCl_{2} forms hard clear crystals that don't conduct electricity. When the crystals melt at $963^{\circ} \mathrm{C}$, the resulting liquid does conduct electricity. The type of solid formed by BaCl_{2} is probably classified as \qquad _.
(a) molecular
(b) metallic
(c) polar
(d) ionic
(e) covalent

7\&8. In the following drawing, the white spheres represent anions and the black spheres represent cations. The following drawing of an ionic compound is a representation of which compound?

(a) NaBr
(b) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
(c) $\mathrm{Ba}\left(\mathrm{BrO}_{3}\right)_{2}$
(d) AlBr_{3}
(e) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

9\&10. The correct Lewis dot structure of BF_{3} uses a total of \qquad valence electrons.
(a) 3
(b) 6
(c) 8
(d) 24
(e) 32

11\&12. Give the ions present and their numbers that appear in the correct formula for iron(II) sulfate.
(a) $2 \mathrm{Fe}^{2+}$ and $2 \mathrm{SO}_{4}{ }^{2-}$
(b) $1 \mathrm{Fe}^{2+}$ and $1 \mathrm{SO}_{4}{ }^{2-}$
(c) $3 \mathrm{Fe}^{2+}$ and $2 \mathrm{SO}_{4}{ }^{2-}$
(d) $2 \mathrm{Fe}^{3+}$ and $3 \mathrm{SO}_{4}{ }^{2-}$
(e) $3 \mathrm{Fe}^{3+}$ and $2 \mathrm{SO}_{4}{ }^{2-}$

13\&14. Which ground state electronic configuration is NOT correct?
(a) $M g \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
(b) As $\quad[A r] 3 d^{10} 4 s^{2} 4 p^{3}$
(c) $\mathrm{Cu} \quad[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$
(d) Po $[\mathrm{Xe}] 6 \mathrm{~s}^{2} 5 d^{10} 6 p^{4}$
(e) $\mathrm{Ni} \quad[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$

15\&16. Consider the diagram when determining the CORRECT statement.

(a) In a closed container, the vapor is in equilibrium with the liquid.
(b) At the top of a very high mountain, the boiling point is about $112^{\circ} \mathrm{C}$.
(c) The vapor pressure is always equal to the atmospheric barometric pressure.
(d) The boiling point of Compound B is always equal to or greater than about $112^{\circ} \mathrm{C}$.
(e) Compound B's vapor pressure is independent of the temperature.

17\&18. Which element is paramagnetic with 2 unpaired electrons?
(a) Mg
(b) S
(c) Na
(d) Al
(e) Cl

19\&20. Which one of the following statements about gases is FALSE?
(a) The volume of the molecules of a gas is very small compared to the total volume in which the gas is contained.
(b) Gases consist of large numbers of particles in rapid random motion.
(c) The average kinetic energy of the molecules is proportional to the absolute temperature.
(d) The attractive forces between the molecules of a gas become significant only at high temperatures and low pressures.
(e) The average kinetic energies of ideal gases are different at different temperatures.

21\&22. Determine the oxidation number of carbon in the carbonate ion, $\mathrm{CO}_{3}{ }^{2-}$.
(a) +2
(b) +3
(c) +4
(d) +6
(e) +8

23\&24. Which one of the following statements about this phase diagram is FALSE?
(a) At Point 2, the solid phase is in equilibrium with gas phase.
(b) Point 1 is called the triple point.
(c) At STP, the substance is a liquid.
(d) At Point 4, the liquid phase is in equilibrium with the solid phase.
(e) When the conditions change from Point 5 to Point 3, the temperature stays constant and the pressure changes.

25\&26. One formula unit of $\mathrm{Li}_{3} \mathrm{PO}_{4}$ contains:
(a) Avogadro's number of phosphorus atoms
(b) 3 ions of Li^{+}
(c) 4 moles of $\mathrm{PO}_{4}{ }^{3-}$ anions
(d) 1 mole of $\mathrm{Li}_{3} \mathrm{PO}_{4}$
(e) 31 g of P

27\&28. Balance the equation with the SMALLEST WHOLE NUMBER COEFFICIENTS possible. Choose the number that is the SUM of the coefficients in the balanced equation. Don't forget coefficients of one.

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

(a) 21
(b) 42
(c) 19
(d) 11
(e) 10

29\&30. The ionic geometry of $\mathrm{BrF}_{4}{ }^{+}$is:
(a) tetrahedral
(b) square planar
(c) trigonal bipyramidal
(d) T-shaped
(e) see-saw

31\&32. In Bronsted-Lowry Theory of acids and bases, an acid is defined as:
(a) a water-former
(b) a hydroxide donor
(c) an electron-pair acceptor
(d) a proton donor
(e) a proton acceptor

33\&34. The following set of 4 quantum numbers: $n=4, \ell=2, m_{\ell}=-1, m_{s}=-1 / 2$ could be an appropriate set for the last electron to go into an atom of: (Assume that the element is not an exception to the normal filling rule.)
(a) Zr
(b) V
(c) Ca
(d) Se
(e) Kr

35\&36. Consider this acid-base net ionic equation: $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$ Which of the following statements is TRUE?
(a) The acid is a strong acid.
(b) The base is insoluble.
(c) The spectator ion could have been a $\mathrm{NO}_{3}{ }^{-}$ion.
(d) The salt is a weak electrolyte.
(e) The spectator ion could have been a Na^{+}ion.

37\&38. The formula weight of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is:
(a) 132 amu
(b) 63 amu
(c) 118 amu
(d) 114 amu
(e) 86 amu

39\&40. If the pH of a solution is 3.56 , what is the molarity of H^{+}ions in the solution?
(a) 0.55 M
(b) 1.27 M
(c) 3.56 M
(d) 0.028 M
(e) $2.8 \times 10^{-4} \mathrm{M}$

41\&42. A sample of CO_{2} occupies 3.70 liters at $20^{\circ} \mathrm{C}$ and 1.50 atm . What volume does it occupy at STP?
(a) 3.24 L
(b) 5.17 L
(c) 75.0 L
(d) 16.3 L
(e) 40.2 L

43\&44. An oxide of lead contains 89.62 \% Pb by mass. The empirical formula is:
(a) PbO_{2}
(b) $\mathrm{Pb}_{2} \mathrm{O}_{3}$
(c) $\mathrm{Pb}_{3} \mathrm{O}_{4}$
(d) PbO
(e) PbO_{3}

45\&46. If a system loses 20 J of heat and does 30 J of work on the surroundings, the change in internal energy is
(a) -50 J
(b) +50 J
(c) -10 J
(d) +10 J
(e) 0 J

47\&48. Using bond energies, calculate $\Delta \mathrm{H}_{\mathrm{rxn}}$ for the reaction: $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}(\mathrm{g}) \rightarrow 2 \mathrm{C}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$ where $\quad \Delta_{\mathrm{C}-\mathrm{H}}=+413 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\mathrm{C}=\mathrm{C}}=+835 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\mathrm{H}-\mathrm{H}}=+436 \mathrm{~kJ} / \mathrm{mol}$
(a) -14 kJ
(b) +32 kJ
(c) +1684 kJ
(d) -215 kJ
(e) +1225 kJ

49\&50. Laughing gas (nitrous oxide or dinitrogen oxide) can be produced by carefully heating ammonium nitrate:

$$
\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Calculate the standard enthalpy change associated with the decomposition of 1.00 mol of $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$.

Compound	$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$
Ammonium nitrate (s)	-366
Nitrous oxide (g)	+82
Water (g)	-242

(a) +103 kJ
(b) -526 kJ
(c) -36 kJ
(d) +38 kJ
(e) -206 kJ

51\&52. How many moles of NH_{3} will be produced when 8.94 moles of $\mathrm{H}_{2} \mathrm{O}$ are also produced according to the following equation?

$$
\mathrm{Ce}_{2} \mathrm{O}_{3}+6 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow 2 \mathrm{CeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{NH}_{3}
$$

(a) 4.47 mol
(b) 13.4 mol
(c) 6.00 mol
(d) 17.9 mol
(e) 2.24 mol

53\&54.Consider the reaction:
$2 \mathrm{KCrO}_{2}+3 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KOH} \rightarrow 2 \mathrm{~K}_{2} \mathrm{CrO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$
$\begin{array}{llllll}\mathrm{FW} & (\mathrm{g} / \mathrm{mol}) & 123.1 & 34.0 & 56.1 & 194.2\end{array} 18.0$
If 20.0 g of each reactant were used for this reaction, the limiting reactant would be:
(a) KCrO_{2}
(b) $\mathrm{H}_{2} \mathrm{O}_{2}$
(c) KOH
(d) $\mathrm{K}_{2} \mathrm{CrO}_{4}$
(e) $\mathrm{H}_{2} \mathrm{O}$

55\&56.Given: benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$: m.p. $5.5^{\circ} \mathrm{C}$, b.p. $80.0^{\circ} \mathrm{C}$
heat of fusion $=127 \mathrm{~J} / \mathrm{g}$ at $5.5^{\circ} \mathrm{C}$
heat of vaporization $=395 \mathrm{~J} / \mathrm{g}$ at $80 .{ }^{\circ} \mathrm{C}$
specific heat $(\mathrm{g})=1.04 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
specific heat $(\ell)=1.74 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
specific heat $(\mathrm{s})=0.89 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

Calculate the amount of heat that must be released to convert 1.00 g of gaseous benzene at $80.0^{\circ} \mathrm{C}$ to liquid benzene at $6.0^{\circ} \mathrm{C}$.
(a) 395 J
(b) 131 J
(c) 114 J
(d) 524 J
(e) 439 J

57\&58. Naturally occurring thallium (atomic number 81) consists of two isotopes: ${ }^{203} \mathrm{TI}$ with mass 202.97 amu and ${ }^{205} \mathrm{TI}$ with mass 204.97 amu. What is the percent abundance of ${ }^{203} \mathrm{TI}$?
(a) 30%
(b) 40%
(c) 50%
(d) 60%
(e) 70%

59\&60. The valuable solvent, carbon tetrachloride can be produced by the gas phase reaction of chlorine gas with methane.

$$
4 \mathrm{Cl}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{CCl}_{4}+4 \mathrm{HCl}
$$

Assuming this process is 87% efficient, how many kilograms of chlorine ($\mathrm{FW}=70.9 \mathrm{~g} / \mathrm{mol}$) are required

(a) 56 kg
(b) 18 kg
(c) 67 kg
(d) 83 kg
(e) 74 kg

CHEMISTRY 101

\qquad
(Please Block Print legibly)

PART 2

Please read and sign: "On my honor, as an Aggie, I have neither given nor received unauthorized aid on this exam."
(5 pts) 61. A 3.00 g sample of KClO_{3} decomposes to yield oxygen at $25.0^{\circ} \mathrm{C}$ and 735 torr. What volume of oxygen is collected?

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

(3 pts) 62. (a) Put the following compounds in order of increasing boiling point: $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{KBr} \quad \mathrm{Kr} \quad \mathrm{HBr}$.
(3 pts)
(b) What are the interparticle forces in operation for each compound?

OVER \rightarrow
(5 pts) 63. How many milliliters of $0.500 \mathrm{M} \mathrm{HNO}_{3}$ would be required to react with 1.00 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$?

$$
\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{H}_{2} \mathrm{O} \text { (UNBALANCED) }
$$

(4 pts) 64 How many sigma and pi bonds are in the following compound?

Extra Credit (2 pts) What is the hybridization of the carbon atom identified by the arrow? \qquad

SCRAP PAPER OR COMMENTS ON EXAM

CHEMISTRY 101 FINAL Form B	Spring 2010	NAME

