CHEMISTRY 101 FINAL FORM A

SPRING 2010 DR. KEENEY-KENNICUTT

Directions: (1) Put your name on PART 1 and your name and signature on PART 2 of the exam where indicated.

- (2) Sign the Aggie Code on PART 2 of this exam.
- (3) Each multiple choice question is actually 2 questions on your scanning sheet. If you are sure of an answer, **put the same answer down for both questions** for 5 pts. If you cannot decide between two answers, put your BEST answer down for the ODD/FIRST question for 3 pts and your SECOND BEST answer down for the EVEN/SECOND question for 2 pts. If there is an ambiguous multiple choice question, use the last page to explain your answer.
- (4) Do NOT write on the envelope.
- (5) When finished, put both parts of the exam in the envelope with the scanning sheet. You can leave during announced times.
- (6) There are a total of 64 questions (34 actual questions with 2 pts extra credit). Total value is 170 + 2 points.

PART 1

1&2.	Which of the following is a non-polar covalent bond?					
	(a) Te-l	(b) H-Cl	(c) O-S	(d) Na-Ca	(e) P-As	;
3&4.	Titanium (Ti) cono Solid Ti can proba	ducts electricity as ably be classified a	a solid. It melts at as a	: 1675°C to give a solid.	liquid that	also conducts electricity.
	(a) ionic	(b) metallic	(c) polar	(d) molecu	ılar (e) covalent
5&6.	The correct Lev	vis dot structure of	BeF ₂ uses a total	ofval	ence elec	trons.
	(a) 2	(b) 4	(c) 8	(d) 16	((e) 24
788 Which element is paramagnetic with 2 unpaired electrons?						
	(a) Mg	(b) F	(c) B	(d) O	(e) Be	
9&10. In Bronsted-Lowry Theory of acids and bases, a base is defined as:						
	(a) a proton donc	or	(b) a hydroxide d	onor	(c) an e	lectron-pair acceptor

(d) a water-former (e) a proton acceptor

11&12. One formula unit of K_2SO_4 contains:

- (a) 2 ions of K^+
- (b) 1 mole of K₂SO₄
- (c) 32 g of S
- (d) 4 moles of SO_4^{2-} anions
- (e) Avogadro's number of sulfur atoms

13&14. Which of the following statements is/are **true** about ⁵⁶Fe³⁺?

(1) this ion has 2	9 electrons	(2) th	iis ion has 26 neutro	ons (3) this ion	has 26 protons
(a) 1 only	(b) 1 and 3 o	nly	(c) 1 and 2 only	(d) 2 and 3 only	(e) 3 only

15&16. Which ground state electronic configuration is NOT correct?

- (a) Po [Xe] $6s^2 5d^{10} 6p^4$
- (b) Ni [Ar] $3d^8 4s^2$
- (c) Cr [Ar] $3d^5 4s^1$
- (d) Mg $1s^2 2s^2 2p^6 3s^2$
- (e) As [Ar] $3d^{10} 4s^2 4p^3$
- **17&18.** Consider the diagram when choosing the CORRECT statement from the following:

- (a) The vapor pressure is always equal to the atmospheric barometric pressure.
- (b) Compound A's vapor pressure is independent of the temperature.
- (c) The boiling point of Compound A is always equal to or greater than about 56°C.
- (d) At the top of a very high mountain, the boiling point is about 56° C.
- (e) In a closed container, the vapor is in equilibrium with the liquid.

19&20. The ionic geometry of SF_3^{-} is:

(a) trigonal pyramidal

(b) trigonal planar

(c) trigonal bipyramidal

(d) T-shaped

- (e) see-saw
- **21&22.** In the following drawing, the white spheres represent cations and the black spheres represent anions. The following drawing of an ionic compound is a representation of which compound?

23&24. Consider this acid-base net ionic equation: $2H^+(aq) + Ni(OH)_2(s) \rightarrow Ni^{2+}(aq) + 2H_2O(\ell)$ Which of the following statements is TRUE?

- (a) The acid is a weak acid.
- (b) The base is a weak electrolyte.
- (c) The spectator ion could have been a NO_3^- ion.
- (d) The salt is insoluble.
- (e) The reaction is called a precipitation reaction.
- **25&26.** Determine the oxidation number of sulfur in the sulfate ion, SO_4^{2-} .
 - (a) +2 (b) +4 (c) +6 (d) +7 (e) +8
- **27&28.**The following set of 4 quantum numbers: n = 5, $\ell = 2$, $m_{\ell} = +2$, $m_s = +1/2$ could be an appropriate set for the last electron to go into an atom of: (Assume that the element is not an exception to the normal filling rule.)
 - (a) Zr (b) Kr (c) Sr (d) Sn (e) W
- **29&30.** Which one of the following statements about this phase diagram is FALSE?
 - (a) At Point 4, the substance is a gas.
 - (b) Point 5 is called the triple point.
 - (c) At Point 3, the liquid phase is in equilibrium with gas phase.
 - (d) When the substance moves from the conditions at Point 2 to the conditions at Point 4, the substance sublimes.
 - (e) When the conditions change from Point 1 to Point 3, the temperature changes and the pressure stays constant.

31&32. Give the ions present and their numbers that appear in the correct formula for copper(II) carbonate.

(a) $2 Cu^{2+}$ and $1 CO_3^{2-}$ (b) $2 Cu^{2+}$ and $2 CO_3^{2-}$ (c) $2 Cu^{2+}$ and $3 CO_3^{2-}$ (d) $1 Cu^{2+}$ and $1 CO_3^{2-}$ (e) $1 Cu^{3+}$ and $2 CO_3^{2-}$

33&34. Balance the equation with the SMALLEST WHOLE NUMBER COEFFICIENTS possible. Choose the number that is the SUM of the coefficients in the balanced equation. Don't forget coefficients of one.

 $Na_2SO_3 + HCI \rightarrow NaCI + H_2O + SO_2$

(a) 5 (b) 7 (c) 9 (d) 12 (e) 15

35&36. Which one of the following statements about gases is FALSE?

- (a) Gases consist of large numbers of particles in rapid random motion.
- (b) The volume of the molecules of a gas is very small compared to the total volume in which the gas is contained.
- (c) The average kinetic energy of the molecules is proportional to the absolute temperature.
- (d) The average kinetic energies of ideal gases are different at different temperatures.
- (e) The attractive forces between the molecules of a gas become significant only at high temperatures and low pressures.
- **37&38.** The formula weight of $Mg_3(PO_4)_2$ is:

	(a)	168 amu	(b) 239 amu	(c) 358 amu	(d) 214 amu	(e) 263 ami
--	-----	---------	-------------	-------------	-------------	-------------

39&40. If a system gains 20 J of heat and does 30 J of work on the surroundings, the change in internal energy

is

(a) -50 J (b) +50 J (c) -10 J (d) +10 J (e) 0 J

41&42. If the pH of a solution is 2.11, what is the molarity of H^+ ions in the solution?

(a) 7.8 x 10 ^{−3} M	(b) 0.75 M	(c) 0.32 M	(d) 0.12 M	(e) 2.11 M

43&44. An oxide of iron contains 72.36% Fe by mass. The empirical formula is:

(a) FeO (b) Fe_3O_4 (c) Fe_2O_3 (d) FeO_2 (e) Fe_3O_2

45&46. How many moles of P_4S_{10} will be produced when 0.50 moles of S_8 reacts with excess P_4 according to the following equation?

47&48. The microorganisms causing "gas gangrene" produce the gas by fermenting "muscle sugar":

 $C_6H_{12}O_6(s) \ \rightarrow \ 2C_2H_5OH(\ell)$ + $2CO_2(g)$ in the presence of bacteria

What would be the standard enthalpy change for the fermentation of 1.00 mole of the sugar?

	Co	ompound	ΔH_{f}^{o} (kJ/mol)	
	C ₆	H ₁₂ O ₆ (s)	-1255	
	C ₂	H₅OH(ℓ)	-278	
		CO ₂ (g)	-393	
(a) –1926 kJ	(b) –87 kJ	(c) <i>−</i> 584 k	J (d) +584 kJ	(e) +91 kJ

49&50. Using bond energies, calculate \triangle Hrxn for the reaction: CH₄(g) \rightarrow C(g) + 2H₂(g)

where	D _{C-H} = +413 kJ/mol D _{H-H} = +436 kJ/mol			
(a) -459 kJ	(b) +46 kJ	(c) +170 kJ	(d) +780 kJ	(e) +849 kJ

51&52.A sample of neon occupies 4.50 liters at 30°C and 2.50 atm. What volume does it occupy at STP?

(a) 4.19 L (b) 23.6 L (c) 10.1 L	(d) 73.2 L	(e) 8.45 L
----------------------------------	------------	------------

53&54.Naturally occurring gallium (atomic number 31) consists of two isotopes: ⁶⁹Ga with mass 68.92558 amu and ⁷¹Ga with mass 70.924704 amu. What is the percent abundance of ⁷¹Ga?

(a) 80%	(b) 20%	(c) 40%	(d) 60%	(e) 50%
(-)			() = = = =	(-)

55&56.Carbon tetrachloride, a valuable commercial solvent, can be produced by the gas phase reaction of methane with chlorine gas.

 $CH_4 + 4 Cl_2 \rightarrow CCl_4 + 4 HCl$

Assuming this process is 64% efficient, how many kilograms of chlorine (FW=70.9 g/mol) are required for the production of 15 kg of CCl_4 (FW=153.8 g/mol), assuming excess CH_4 ?

(a) 43 kg (b) 18 kg (c) 67 kg (d) 83 kg (e) 96 kg

57&58.Given: benzene (C₆H₆): m.p. 5.5°C, b.p. 80.0°C

heat of fusion = 127 J/g at 5.5°C heat of vaporization = 395 J/g at 80.°C specific heat (g) = $1.04 \text{ J/g}^{\circ}\text{C}$ specific heat (ℓ) = $1.74 \text{ J/g}^{\circ}\text{C}$ specific heat (s) = $0.89 \text{ J/g}^{\circ}\text{C}$

Calculate the amount of heat that must be absorbed to convert 1.00 g of solid benzene at 5.5° C to liquid benzene at 70.0° C.

(a) 127 J (b) 239 J (c) 114 J (d) 205 J (e) 263 J

59&60. Consider the reaction:

If 10.0 g of each reactant were used for this reaction, the limiting reactant would be:

(a) $FeCl_2$ (b) $KMnO_4$ (c) HCl (d) $MnCl_2$ (e) $FeCl_3$

(Please Block Print legibly)

PART 2

Please read and sign: "On my honor, as an Aggie, I have neither given nor received unauthorized aid on this exam."

(5 pts) **61.** How many milliliters of 0.500 M AgNO₃ are needed to react with 10.0 g of Cu, according to the following unbalanced equation?

 $AgNO_3 + Cu \rightarrow Cu(NO_3)_2 + Ag$ (UNBALANCED)

(4 pts) **62** How many sigma and pi bonds are in the following compound?

Extra Credit (2 pts) What is the hybridization of the carbon identified by the arrow?

OVER→

(5 pts) **63.** How many liters (at 300.°C and 1.50 atm) of oxygen can be produced by the decomposition of 25.0 g of potassium chlorate?

 $2\text{KCIO}_3 \ \rightarrow \ 2\text{KCI} \ + \ 3\text{O}_2$

(3 pts) **64.** (a) Put the following compounds in order of increasing boiling point: NaCl NH_3 H_2 SO_2 .

(3 pts) (b) What are the interparticle forces in operation for each compound in the liquid phase?

SCRAP PAPER OR COMMENTS ON EXAM

CHEMISTRY 101	Spring 2010	NAME
FINAL Form A		