Chapter 23 - Nuclear Chemistry

Chemical reactions: reactions in which elements maintain their identity and interact only through electronic changes (changes in the number of outer elections etc).

Nuclear reactions involve
(1) Changes in the composition of nuclei
(2) release (usually) of tremendous amounts of energy
(3) transmutation of elements (element $1 \rightarrow$ element. ${ }_{1}$)

Recall the characteristics of the nucleus of an atom; the nucleus makes up only a very small part of the total volume - but it contains most of the mass of an atom hence it is very dense. (Rulherfords' exp - Ch 53) It is known now that there are many subatomic particles in the nucleus not just protons and neutions - That help overcome the coulombic proton-proton repulsion and bind the nuclear particles (nucleons) together.

Nuclear reactions are the result of the instability of the nuclues of an atom. The more unstable the nuclues is, the faster it will decay or decompose and release radiation (radioactivity).

Nuclear stability can be related to the ratio of the number of reutions to the number of protons. (n / p) in the nucleus. The most stable nuclides (the set of all the isotopes of all the elements) are those with an even number of both neutions and protons.

Consider all the naturally occurring nuclides

protons neutions number of nuclides	even even	even odd	odd even	odd odd

Moreover, there are magic numbers which appear to impart exceptional stability. Nuclides with a number of protons os a number of neutions OR a sum of these two equal to $2,8,20,28,50,82,126$ have unusual stability, eg.

Figure 23.3 p. 1117 Shows a plot of the number of mentions (N) versus number of protons ($Z=$ atomic number) fo the stable nuclides

Above an atomic number of 20 , most stable nuclides have n / p ratio >1 Nuclei whose n / p ratios lie outside the band of stability emit particles) and/or electromagnetic rays in oder to get back into the band of stability. These nucler lying outside the band of stability are called radivactive and undergo spontaneous radioactive decay.

Common Radioactive Emissions

Lets look at the ways in which nuclides outside the band of stability return to the band of stability.

Ir Nuclei Above Band of Stability: $\frac{n}{p}$ ratio is too lange

(1) beta emission \equiv gain a proton + lose a neution due to $i n \rightarrow i p+{ }_{-1}$ i
 Atrentron does undergo sp ontianemo decay to a proton and anelection.
(2) neutron emission

$$
{ }_{53}^{137} I \rightarrow{ }_{53}^{136} I+{ }_{o}^{1} n
$$

Note: to balance nuclear reactions,
\sum mass numbers of reactants $=\sum$ mass numbers of products
\sum atomic numbers of reactants $=\sum$ atomic numbers of products
II. Nuclei Below Band of Stability : n / p ratio is too small

(1) positron emission due to ${ }_{1} p \rightarrow{ }_{0}^{1} n+1 \beta$

$$
\begin{aligned}
& { }_{19}^{38} K \rightarrow{ }_{18}^{38} \underline{A r}+{ }_{1 \beta}^{0} \beta
\end{aligned}
$$

(2) electron capture (" K " election capture)

- an election from $n=1$ orbital (K shell) is captured by the nucleus

$$
{ }_{47}^{106} \mathrm{Ag}+{ }_{-1}^{0} e \rightarrow{ }_{46}^{106} \mathrm{Pd}
$$

III. Nuclei with Atomic Number (A.N.) >83.
all are radioactive
many decay by alpha emission

$$
{ }_{88}^{296} \mathrm{Ra} \rightarrow{ }_{86}^{222} \mathrm{Rn}+{ }_{2}^{4} \mathrm{He}
$$

Radiation can be detected in many ways: (Section 30-8)

1. photographic detection
2. detection by fluorescence using scintillation counter - very routine
3. claud chamber
4. gas ionization counters (eg Geiges-Mülter counter)

Ficmuent	U-238 Series						
Nepmoninet							
Uraniemb	$\begin{gathered} \mathrm{U}-238 \\ 4.49 \times 10^{0} \\ \mathrm{yms} \end{gathered}$		$\begin{gathered} \mathrm{U}-234 \\ 2.48 \times 10^{6} \\ \mathrm{yms} \end{gathered}$				
Protactinium		$\begin{array}{\|c\|} \hline \mathrm{Pa}-234 \\ 1.18 \\ \mathrm{~min} \\ \hline \end{array}$					
Thorium	$\begin{gathered} \text { Th-234 } \\ 24.1 \\ \text { days } \end{gathered}$		$\begin{gathered} \hline \text { Th }-230 \\ 7.5 \times 10^{4} \\ \mathrm{yms} \\ \hline \end{gathered}$				
Actinium							
Radiem			$\begin{gathered} \text { Ra-226 } \\ 1622 \\ \text { yms } \end{gathered}$				
Francieve							
Radon			$\begin{gathered} R n-222 \\ 3.825 \\ \text { days } \end{gathered}$				
Astatine							
Polonievm			$\begin{gathered} \text { Po-218 } \\ 3.05 \\ \mathrm{~min} \end{gathered}$		$\begin{gathered} \text { Po-214 } \\ 1.6 \times 10^{-4} \\ \text { sec } \\ \hline \end{gathered}$		$\begin{gathered} \text { Po-210 } \\ 138.4 \\ \text { days } \end{gathered}$
T				$\begin{array}{\|c\|} \hline \mathrm{Bi}-214 \\ 19.7 \\ \mathrm{~min} \\ \hline \end{array}$		$\begin{gathered} \mathrm{Bi}-210^{\circ} \\ 50 \\ \text { days } \\ \hline \end{gathered}$	
Lead			$\begin{gathered} \mathrm{Pb}-214 \\ 26.8 \\ \mathrm{~min} \end{gathered}$		$\begin{gathered} \mathrm{Pb}-210^{\prime} \\ 21.4 \\ \mathrm{yms} \end{gathered}$		$\begin{aligned} & \text { Pb-206 } \\ & \text { stable lead } \\ & \text { (isotope) } \end{aligned}$
Thatilem							

Across state lines

USt today: Aprix 24, 1986 ,
Homeowners at peril from deadly radon gas

Stanley Watras sympathizes with the 70 Cilates, N.J. homeowners who this week begin trying to eliminate high levels of radiation from their houses.
Elighteen months aso Watras, of Beyertown, Pa, set off radiation monitors as he walked into a nuclear power plant. He also set off a wave of concern that radon - radioective gas linked to lung cancer - could be seeptng from underground rock formations into millions of USA homer.
"I just kept thiniting "What have I done to my rids?" "said Watras, 35, a construction engineer and father of two. "My soa Christopher lived 12 of his tirst 15 mooths in that enviroument' What have we done to htm?"

Home contamination from commercial urantum operations is well documented. But Clinton and Boyertown involve a newer and perhaps more pervastve threat - radioactivity from natural radoa-bearing rock, inctuding granite, phosphate, shale and uranium

Watras was forced to leave his home for more than a year during repairs. Cintoa readdents likely can remain The U.S. Environmental Agency this. week began an effort to remedy radiation in 10 Cilinton homes, Other homeowners likely will have to pay $\$ 2,000-\$ 10,000$ for repairs. Most wort involves ventiation improvements and sealing foundation cractos.
The EPA also is sampling the USA to determine the enormity of the problem. Estumates range from a million to several million homes.
"The potential exdste for many, many more problems," sald heaith physictst Christie Eheman of the Nattonal Center for Disoase Control. Some state effortis

New Jersey hopes next moath to begti a statewide geological study and testing of thousends of homes.

En Flerida, spectal ventilation requirements for homes being built in high-risk areas 80 into effect Thursday.

IIdabo this month said homes tested in Biaine and Koctemal counties average double the federal standard.

In New Mexice, a small sampling revealed several homes above the federal standard Funding is a problem.

Bonneville Power Administration offers free testing in Idabo, Meatara, Oregien, Wathingtioa and Wyemine
Health offictais found a rediation leved in Watras' home of about 3,200 picocuries per itter - the equivalent to smok. ing about 100 pectss of cigarettes a day. Four plcocuries is generatly considered the acceptable limit
In Clinton, 70 houses regestered between four and 1,000 picocuries Gerry Nichole of the state Bureau of Radiation Protection said mox were about 200 plcocuries.
"Nobody is panicting" said Clinton Mayor Robert Nut man, who sald he docen't expect values to drop on the $\$ 100,000$-phus homes. More houses will be tested.
Watras admits he's bitter, but says there is no one to blame. "You can't sue God," said Watros. "And he's... put it there."

$$
3200_{L}=7100 \mathrm{dpm} / \mathrm{L} \quad \text { - Jetas Becoa }
$$

10 dpm is acceptatle limit
1 curie $=3.7 \times 10^{10} \mathrm{dps}$ most $\sim 400 \mathrm{dpm}$.

In a 1.0 L sample of air, the concentration of $R_{n}-222$ was reasured to be 200 dpm (disintegration per minute).
($7000 \mathrm{dpm} / \mathrm{L}$ is high \#)
stria \rightarrow (a) How many atoms, moles, grams of $R_{n} \mathrm{R}_{\mathrm{n}}$ does this represent?

Or better yet, use the equations we've used before:
$\ln (\mathrm{A} / \mathrm{Ao})=-\mathrm{kt}$
Where $\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}$

$$
\begin{aligned}
\text { rate of decay }=\frac{-d A}{d t} & =k A \\
200 d p m & =k A
\end{aligned}
$$

\therefore must find the rate constant k in minute ${ }^{-1}$

$$
\begin{aligned}
k=\frac{0.693}{t \frac{1}{2}(\text { in min })} & =\frac{0.693}{3.82 \mathrm{~d} \times 24} \frac{\text { hows }}{\mathrm{d}} \times \frac{60}{\mathrm{~min}} \mathrm{~h} \\
& =1.26 \times 10^{-4} \mathrm{~min}^{-1} \\
\therefore A & =\frac{200 \mathrm{dpm}}{1.26 \times 10^{-4}} \mathrm{~min}^{-1} \\
& =1.59 \times 10^{6}
\end{aligned}
$$

$$
\therefore 1.59 \times 10^{6} \text { atoms are in the sample (IL) }
$$

$$
A(\text { mol })=\frac{1.59 \times 10^{6} \text { atoms }}{6.023 \times 10^{23} \text { atom } / \text { mole }}=2.64 \times 10^{-18} \text { moles radon }
$$

$$
A(g)=2.64 \times 10^{-18} \text { moles } \times 2229 / \text { mole }=5.86 \times 10^{-16} \mathrm{~g} \text { in } 1 \text { liter } \text { sample. }
$$ sample.

(b) What $\%$ of $R n$ has decayed away after 8.00 days?

$$
\begin{gathered}
\text { Esturiation } \\
\text { using } \\
4 \mathrm{~d}
\end{gathered}
$$

\therefore after 8d, we have $\sim \frac{1}{4}$ left

$$
\begin{aligned}
\log \left(\frac{A}{A_{0}}\right) & =\frac{-k t}{2.303} \quad k(d)= \\
\log \left(\frac{A}{A_{0}}\right) & =\frac{-0.181 d^{-1} \times 8 d}{2.303} \\
& =-0.629 \\
\left(\frac{A}{A_{0}}\right) & =0.235=\text { fraction remaining } .
\end{aligned}
$$

$\therefore 23.5 \%$ of R_{n} remains
$\therefore 76.5 \%$ of R_{n} has decayed away.
(c) How long (in days) before 1 liter of sample is reading a safe level: 10 dp

$$
\begin{aligned}
\log \frac{A}{A_{0}} & =-\frac{k t}{2.303} \\
\log \frac{10}{200} & =-\frac{0.181 t}{2.303} \\
-1301 & =-\frac{0.181 t}{2.303} \\
t & =16.6 \text { days }
\end{aligned}
$$

Why cant a person just wait 17 days until their home air reading is down to 10 dp ${ }^{238} U$ is present in building material and keeps producing more.

Uses of Radionuclides

There are many practical applications of ractionuclides because they decay at known rates. Rates of decay are independent of external factors such as concentration, temperature, pressure, catalyst etc.
These include
(1) radioactive dating
(a) radio carbon dating : ofjects $<50,000$ years old

$$
{ }_{6}^{14} \mathrm{C} \rightarrow{ }_{7}^{14} N+{ }_{-1}^{0} \beta \quad t_{\frac{1}{2}}=5730 \text { years }
$$

(b) uranium -lead dating: objects several billion years ald ${ }^{238} \mathrm{U} \rightarrow \rightarrow \rightarrow{ }^{206} \mathrm{~Pb} \quad t_{\frac{1}{2}}=4.5 \times 10^{9}$ years used to determine age of the earth at 4.6×10^{9} years.
(2) medical uses : radioactive hacers, pacemakers, ${ }^{\text {"O }} \mathrm{Co}$ treatments for canc
(3) research:
(4) agricultural uses: investigating nutient uptake
(5) industrial uses

Artificial Transmutation of Elements (Nuclear bombardment)

The first artificially induced nuclear reaction happened in 1915 by Rutherford.

$$
{ }_{7}^{14} \mathrm{~N}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{1}^{1} \mathrm{H}+{ }_{8}^{17} \mathrm{O}
$$

The abbreviated form of this reaction is

$$
{ }_{7}^{14} N\left(\begin{array}{l}
4 \\
2
\end{array} \alpha,{ }_{1}^{1} p\right){ }_{8}^{17} 0
$$

1. bombardment with positive ions
positive ions: ${ }_{1}^{1} \mathrm{H}$ hydrogen (ion)
${ }_{1}^{2} \mathrm{H}$ deuterium nucleus +1 change
${ }_{2}^{4} \mathrm{He}$ helium (ion) nucleus +2 change
problem: since the nucleus is positively charged, a great deal of energy is required to bombard it with a positively changed ion. Cyclotions and linear accelerators are needed.

$$
\text { examples: } \begin{aligned}
& { }_{90}^{230} \mathrm{Th}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{87}^{223} \mathrm{Fr}+2{ }_{2}^{4} \mathrm{He} \\
& \\
& { }_{42}^{96} \mathrm{Mo}_{0}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{43}^{97} \mathrm{~F}_{\mathrm{C}}+{ }_{0}^{1} \mathrm{n}
\end{aligned}
$$

2. Neution bombardment :

Since neutions have no charge, they need not be accelerated to produce bombardment reactions. Neutrons can be produced in nuclear reactors.

Types of reactions
(a) fast neutrons - have high kinetic energies - cause subsidiary particles to be ejected

$$
{ }_{60}^{142} \mathrm{Nd}+{ }_{0}^{1} n \rightarrow{ }_{61}^{143} \mathrm{Pm}+{ }_{-1}^{0} \beta
$$

(b) slow reutions are captured by the nucleus

$$
{ }_{80}^{200} \mathrm{Hg}+{ }_{0}^{1} n \rightarrow{ }_{80}^{201} \mathrm{Hg}+{ }_{0}^{0} \gamma \quad: a(n, \gamma) \text { reaction }
$$

Nuclear Fission and Fusion
nuclear fission : the process in which a heavy nucleus (A.N. >80) splits into nuclei of intermediate masses and one or more neutrons are emitted. E.g.
nuclear fusion: The process in which light nuclei combine together to produce a heavier nucless. Eg

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} n+\text { energy }
$$

deuterium hitium (more energy than fusion produces)

Where does this energy that is produced come form? ANSWER: in both reactions, the products. have a total mass that is slightly less than the sum of the masses of reactants. ie there is a decrease in mass that accompanies the reaction. This difference in mass between products and the reactants is equivalent to the energy released in the nuclear reaction by $E=m c^{2}$ (Einsteins equation)

It is an experimental fact that the mass of an atom is ALWAys less than the sum of the masses of its constituent particles. The difference in masses is the MASS DEFICIENCY or DEFECT..
mass defect $=$ (sum of masses of all e^{-}, p^{+}and $\left.n^{\circ}\right)$ - (actual mass of atom,
this mass defect is equivalent to the energy required to bind the elections, protons and neutrons together - called the NuCLEAR BINDING ENERGY using $E=m c^{2}$.

Example: Calculate for ${ }_{17}^{35} \mathrm{Cl}$ whose atomic weight is 34.9689 amu.
(a) mass defect : in $^{35} \mathrm{Cl}$ there are 17 protons, 17 elections, 18 neutrons

$$
\begin{array}{ll}
\text { The sum of masses }: \quad 17 \mathrm{p}^{+}: 17 \times 1.0073=17.1241 \text { amu } \\
\text { of constituent } \\
\text { particles } & 17 \mathrm{e}^{-}: 17 \times 0.00055=0.0093 \\
& 18 \mathrm{n}^{\circ}: 18 \times 1.0087=\frac{18.1566}{35.2900} \text { amu }
\end{array}
$$

but the actual mass is only 34.9689 amu.

$$
\begin{aligned}
\therefore \text { mass defect } & =35.2900-34.9689 \\
& =0.3211 \text { amu } / \text { atom of }{ }^{35} \mathrm{Cl}
\end{aligned}
$$

(b) nuclear binding energy ($\mathrm{J} / \mathrm{mol}$) is energy required to separate 1 mole of ${ }^{35} \mathrm{Cl}$ atoms into it parts.
mass defect $=0.3211 \mathrm{~g} /$ mole of ${ }^{35} \mathrm{Cl}$ by definition of amu.

$$
\begin{aligned}
E & =m c^{2} \\
& =\left(3.211 \times 10^{-4} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \\
& =2.89 \times 10^{13^{2} \mathrm{~J}} / \mathrm{mole} \\
& =2.89 \times 10^{10} \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$E:$ energy (J)
$m: \operatorname{mass}(\mathrm{kg})$
c : speed of light $\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
Note: this is a lot of energy.

Another way to express nuclear binding energy is in MeV per nucleon. (mega election volta) The conversion factor (queen when needed) is 931 MeV /amu. (from $E=m c^{2}$)

Note: A nucleon is a particle making up the nucleus - a neutron o a proton. The number of nucleons in a particular isotope is equal to the mass number, (the sum of protons + neutzons). E.g. the number of nucleons in ${ }^{35} \mathrm{Cl}=35$.

$$
\begin{aligned}
\therefore \text { nuclear binding energy } & =0.3211 \frac{\text { amu }}{\text { atom }} \times \frac{1 \text { atom }}{35 \text { nucleons }} \times 931 \frac{\mathrm{MeV}}{\mathrm{amu}} \\
(\mathrm{MeV} / \text { nucleon }) & =8.54 \mathrm{MeV} / \text { nucleon } .
\end{aligned}
$$

So, how much energy is released in fusim? $\triangle E$ for the reaction below.

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} n+\text { energy }
$$

Plan (1)find Δ mass in reaction (amu)
(2) use conversion factor, $931 \mathrm{MeV} /$ amu e

$$
\text { mass of } \begin{aligned}
{ }_{1}^{2} H & =2.0140 \mathrm{amu} \\
{ }_{1}^{3} H & =3.01605 \\
{ }_{2}^{4} H e & =4.00260 \\
{ }_{0}^{1} n & =1.0087
\end{aligned}
$$

$$
\begin{aligned}
\therefore \Delta \text { mass for reaction } & =(2.0140+3.01605)-(4.00260+1.0087) \\
& =0.01875 \mathrm{amu}
\end{aligned}
$$

$$
\begin{aligned}
\Delta E & =0.01875 \mathrm{amu} \times 931 \mathrm{MeV} / \mathrm{amu} \\
& =17.5 \mathrm{MeV}
\end{aligned}
$$

What is the meaning of this number: 17.5 MeV ot energy released when later of deuterium reacts with 1 aton of titiem to form helium and a neutron?

Using conversion factor: $\mathrm{leV}=1.60 \times 10^{-19} \mathrm{~J}$
on an atomic scale, this reaction produces $17.5 \times 10^{6} \mathrm{eV} \times 1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}$

$$
\text { or } 2.80 \times 10^{-12} \mathrm{~J}
$$

but if 1 mol of ${ }^{2} \mathrm{H}(\imath 2 \mathrm{~g})$ reacts with ${ }_{1}^{3} \mathrm{H}(\sim 3 \mathrm{~g})$,
then $2.80 \times 10^{-12} \mathrm{~J} /$ atom $\times 6.02 \times 10^{23}$ atoms $/ \mathrm{mal}$
$=1.74 \times 10^{12} \mathrm{~J}$ of ewagy are produced.
How much energy is this?
To calculate the mass of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ that can be heated from $20^{\circ} \mathrm{C}$ to boiling it cay.

$$
\begin{aligned}
\text { heat } & =\left(S_{p} H+H_{2} \mathrm{O} \times \text { mass } \times \Delta T\right)+(H \text { rap wo } \times \text { mass }) \\
1.74 \times 10^{12} \mathrm{~J} & =\left(4.18 \mathrm{~J} / \mathrm{o}^{\mathrm{c}} \times \text { mass } \times(100-20 \times \mathrm{C})+(2260 \mathrm{~J} / \mathrm{g} \times \text { mass })\right. \\
\text { mass } & =6.71 \times 10^{8} \mathrm{~g} \text { water } \\
\text { volume } & \left.=6.71 \times 10^{8} \mathrm{~cm}^{3} \text { water (Density of } \mathrm{H}_{2} \mathrm{O}=1.00\right)
\end{aligned}
$$

How much water can be boiled? using $1.74 \times 10^{12} \mathrm{~J}$ of heat

$$
? \mathrm{q}^{3}=6.71 \times 10^{8} \mathrm{~cm}^{3} \times\left(\frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}\right)^{3} \times\left(\frac{14}{12 \mathrm{in}}\right)^{3}=2.37 \times 10^{4} \mathrm{ft}^{3}
$$

which is the approximate volume of a surmming pool that is 6 ft deep, 40 ft wide, 100 ft long.

If we plot binding energy against mass numbers for all the nucleons, we obtain the following:

${ }^{56} \mathrm{Fe}$ is the most stable atom since it has the highest binding energy In fact, all atoms with intermediate mass numbers have the greatest stability

Atoms with high mass numbers, eg U, will undergo fusion to produce atoms with intermediate mass numbers.
Atoms with low mass numbers, of ${ }_{1}^{2} H$, will undenpfusion readily to form atoms with greater mass and hence greater stability.

Most Nuclear reactors today use fission reactions to produce useful energy. (see flue on next page)

Inside the reactor, enemy is released when the nucleus of a heavy atom (eg (U-235) is split apart by a slow moving neutron into lighter fission fragments plus 2 or more neutions. These neutrons are slowed down when they pass thru a MODERATOR (graphite or water) and are wed to split other U-235 nuclei. The result is a self containing nuclear chain reaction that steadily releases tremendous amounts of energy. The fission rate of $\mathrm{U}-235$ is controlled by moving neutionabsorbing control rods (usually Cd) in + out of fuel core.

A meltdown coccus when (1) fuel rods overheat, (2) the reactors wanum core ques unto uncontrolled reaction + core inelts (3) radioactive molten metal burns thru containment vessel and enters earth, (4) heat hits water table (5) steam rises carrying radiation.

Anere 17. A nuciear power plant with a preeeurized water renctor.

