Chapter 19 Principles of Reactivity: Entropy and Free Energy

Units for thermodynamic processes are typically expressed for the balanced equation given. Hence the equation for the formation of HCl: $H_2 + Cl_2 \rightarrow 2HCl$ has a $\Delta_r G^\circ$, $\Delta_r H^\circ$, and $\Delta_r S^\circ$ that represent the formation of 2 mol of HCl. We can express this as "energy change"/mol-rxn, where "energy change" typically has units of kJ (for G,H) and J/K (for S). In this chapter, we shall omit the "mol-rxn" notation in the interest of brevity. *Unless otherwise noted*, answers should be read: $\Delta_r G^\circ$ and $\Delta_r H^\circ$, units will be kJ/mol-rxn, and for $\Delta_r S^\circ$, units will be J/K• mol-rxn.

PRACTICING SKILLS

Entropy

- 1. Compound with the higher entropy:
 - (a) CO_2 (s) at -78° vs CO_2 (g) at 0 °C: Entropy increases with temperature.
 - (b) $H_2O(l)$ at 25 °C vs $H_2O(l)$ at 50 °C: Entropy increases with temperature.
 - (c) Al₂O₃ (s) (pure) vs Al₂O₃ (s) (ruby): Entropy of a solution (even a solid one) is greater than that of a pure substance.
 - (d) **1 mol N₂ (g) at 1bar** vs 1 mol N₂ (g) at 10 bar: With the increased P, molecules have greater order.
- 3. Entropy changes:

(a) KOH (s)
$$\rightarrow$$
 KOH(aq)
 $\Delta_{\rm r} S^{\circ} = 91.6 \frac{J}{\text{K} \cdot \text{mol}} (1 \text{ mol}) - 78.9 \frac{J}{\text{K} \cdot \text{mol}} (1 \text{ mol}) = +12.7 \frac{J}{\text{K} \cdot \text{mol-rxn}}$

The increase in entropy reflects the greater disorder of the solution state.

(b) Na (g)
$$\rightarrow$$
 Na (s)

$$\Delta_{\mathbf{r}} \mathbf{S}^{\circ} = 51.21 \frac{\mathbf{J}}{\mathbf{K}^{\bullet} \mathbf{mol}} (1 \text{ mol}) - 153.765 \frac{\mathbf{J}}{\mathbf{K}^{\bullet} \mathbf{mol}} (1 \text{ mol}) = -102.55 \frac{\mathbf{J}}{\mathbf{K}^{\bullet} \mathbf{mol} \mathbf{rxn}}$$

The lower entropy of the solid state is evidenced by the negative sign.

(c) Br₂ (
$$\ell$$
) \rightarrow Br₂ (g)
 $\Delta_{\rm r}$ S° = 245.42 $\frac{J}{\text{K} \cdot \text{mol}}$ (1 mol) - 152.2 $\frac{J}{\text{K} \cdot \text{mol}}$ (1 mol) = + 93.2 $\frac{J}{\text{K} \cdot \text{mol-rxn}}$

The increase in entropy is expected with the transition to the disordered state of a gas.

(d) HCl (g) \rightarrow HCl (aq) $\Delta_{r}S^{\circ} = 56.5 \frac{J}{K \bullet mol} (1 \text{ mol}) - 186.2 \frac{J}{K \bullet mol} (1 \text{ mol}) = -129.7 \frac{J}{K \bullet \text{ mol-rxn}}$

The lowered entropy reflects the greater order of the solution state over the gaseous state.

5. Standard Entropy change for compound formation from elements: (a) HCl (g): Cl₂ (g) + H₂ (g) \rightarrow 2 HCl (g)

$$\begin{split} \Delta_{\Gamma} S^{\circ} &= 2 \cdot S^{\circ} \operatorname{HCl}\left(g\right) - [1 \cdot S^{\circ} \operatorname{Cl}_{2}\left(g\right) + 1 \cdot S^{\circ} \operatorname{H}_{2}\left(g\right)] \\ &= (2 \operatorname{mol})(186.2 \frac{J}{K \cdot \operatorname{mol}}) - [(1 \operatorname{mol})(223.08 \frac{J}{K \cdot \operatorname{mol}}) + (1 \operatorname{mol})(130.7 \frac{J}{K \cdot \operatorname{mol}})] \\ &= + 18.6 \frac{J}{K} \operatorname{and} + 9.3 \frac{J}{K \cdot \operatorname{mol-rxn}} \\ \text{(b) } \operatorname{Ca}(\operatorname{OH})_{2}\left(s\right): \operatorname{Ca}(s) + \operatorname{O}_{2}\left(g\right) + \operatorname{H}_{2}\left(g\right) \rightarrow \operatorname{Ca}(\operatorname{OH})_{2}\left(s\right) \\ \Delta_{\Gamma} S^{\circ} &= 1 \cdot S^{\circ} \operatorname{Ca}(\operatorname{OH})_{2}\left(s\right) - [1 \cdot S^{\circ} \operatorname{Ca}\left(s\right) + 1 \cdot S^{\circ} \operatorname{O2}\left(g\right) + 1 \cdot S^{\circ} \operatorname{H}_{2}\left(g\right)] \\ &= (1 \operatorname{mol})(83.39 \frac{J}{K \cdot \operatorname{mol}}) - [(1 \operatorname{mol})(41.59 \frac{J}{K \cdot \operatorname{mol}}) + (1 \operatorname{mol})(205.07 \frac{J}{K \cdot \operatorname{mol}}) + (1 \operatorname{mol})(130.7 \frac{J}{K \cdot \operatorname{mol}})] \\ &= -293.97 \frac{J}{K \cdot \operatorname{mol-rxn}} (\operatorname{or} -294.0 \frac{J}{K \cdot \operatorname{mol-rxn}} \operatorname{to} 4 \operatorname{sf}) \end{split}$$

7. Standard molar entropy changes for:

(a) 2 Al (s) + 3 Cl₂ (g)
$$\rightarrow$$
 2 AlCl₃ (s)

$$\Delta_{r}S^{\circ} = 2 \cdot S^{\circ} \text{ AlCl}_{3} (s) - [2 \cdot S^{\circ} \text{ Al} (s) + 3 \cdot S^{\circ} \text{ Cl}_{2} (g)]$$

$$= (2 \text{ mol})(109.29 \frac{J}{\text{K} \cdot \text{mol}}) - [(2 \text{ mol})(28.3 \frac{J}{\text{K} \cdot \text{mol}}) + (3 \text{ mol})(223.08 \frac{J}{\text{K} \cdot \text{mol}})]$$

$$= -507.3 \frac{J}{\text{K} \cdot \text{ mol} \text{-rxn}}$$
(b) 2 CH₃OH (ℓ) + 3 O₂ (g) \rightarrow 2 CO₂ (g) + 4 H₂O (g)

$$\Delta_{r}S^{\circ} = [2 \cdot S^{\circ} \text{ CO}_{2} (g) + 4 \cdot S^{\circ} \text{ H}_{2}O (g)] - [2 \cdot S^{\circ} \text{ CH}_{3}\text{OH} (\ell) + 3 \cdot S^{\circ} \text{ O}_{2} (g)]$$

$$= [(2 \text{ mol})(213.74 \frac{J}{\text{K} \cdot \text{mol}}) + (4 \text{ mol})(188.84 \frac{J}{\text{K} \cdot \text{mol}})] - [(2 \text{ mol})(205.07 \frac{J}{\text{K} \cdot \text{mol}})]$$

$$= + 313.25 \frac{J}{\text{K} \cdot \text{ mol} \text{-rxn}}$$

In (a) we see the sign of $\Delta_r S^\circ$ as negative—expected since the reaction results in the decrease in the number of moles of gas. In (b), the sign of is positive—as expected, since the reaction produces a larger number of moles of gaseous products than gaseous reactants.

$\Delta_{\Gamma}S^{\circ}(universe)$ and Spontaneity

9. Is the reaction: Si (s) + 2 Cl₂ (g) \rightarrow SiCl₄ (g) spontaneous?

$$\Delta_{\Gamma} S^{\circ} (system) = 1 \cdot S^{\circ} SiCl_{4} (g) - [1 \cdot S^{\circ} Si (s) + 2 \cdot S^{\circ} Cl_{2} (g)]$$

= (1 mol)(330.86 $\frac{J}{K \cdot mol}$) - [(1 mol)(18.82 $\frac{J}{K \cdot mol}$) + (2 mol)(223.08 $\frac{J}{K \cdot mol}$)]
= -134.12 $\frac{J}{K \cdot mol - rxn}$

To calculate $\Delta_r S^{\circ}$ (surroundings), we calculate $\Delta H^{\circ}(system)$:

$$\Delta H^{\circ} = 1 \cdot \Delta H^{\circ} \operatorname{SiCl4}(g) - [1 \cdot \Delta H^{\circ} \operatorname{Si}(s) + 2 \cdot \Delta H^{\circ} \operatorname{Cl}_{2}(g)]$$

= (1 mol)(- 662.75 $\frac{\text{kJ}}{\text{mol}}$) - [(1 mol)(0 $\frac{\text{kJ}}{\text{mol}}$)+ (2 mol)(0 $\frac{\text{kJ}}{\text{mol}}$)] = -662.75 $\frac{\text{kJ}}{\text{mol-rxm}}$
 $\Delta_{r}S^{\circ}$ (surroundings) = - $\Delta H^{\circ}/T$ = (662.75 x 10³ J/mol)/298.15 K = 2222.9 $\frac{\text{J}}{\text{K} \cdot \text{mol-rxm}}$
 $\Delta_{r}S^{\circ}$ (universe) = $\Delta_{r}S^{\circ}$ (system) + $\Delta_{r}S^{\circ}$ (surroundings) =

$$(-134.12 + 2222.9) = 2088.7 \frac{J}{K \cdot \text{mol-rxn}}$$

11. Is the reaction: $2 H_2O(\ell) \rightarrow 2 H_2(g) + O_2(g)$ spontaneous?

$$\Delta_{\Gamma} S^{\circ} \text{ (system)} = [2 \bullet S^{\circ} H_{2} (g) + 1 \bullet S^{\circ} O_{2} (g)] - 2 \bullet S^{\circ} H_{2} O (\ell)$$

$$= [(2 \text{ mol})(130.7 \frac{J}{K \bullet \text{mol}}) + (1 \text{ mol})(205.07 \frac{J}{K \bullet \text{mol}})] - (2 \text{ mol})(69.95 \frac{J}{K \bullet \text{mol}})$$

$$= +326.57 \frac{J}{K} \text{ and for decomposition of 1 mol of water: } +326.57/2 = 163.3 \frac{J}{K \bullet \text{ mol-rxn}}$$

To calculate $\Delta_r S^\circ$ (surroundings), we calculate ΔH° (system):

$$= [(2 \text{ mol})(0 \frac{\text{kJ}}{\text{mol}}) + (1 \text{ mol})(0 \frac{\text{kJ}}{\text{mol}})] - (2 \text{ mol})(-285.83 \frac{\text{kJ}}{\text{mol}})$$

= +571.66
$$\frac{\text{kJ}}{\text{mol}}$$
 and for decomposition of 1 mol of water: +571.66/2 = 285.83 $\frac{\text{kJ}}{\text{mol-rxn}}$

$$\Delta_{\mathbf{r}} \mathbf{S}^{\circ} \text{ (surroundings)} = -\Delta \mathbf{H}^{\circ}/\mathbf{T} = -(285.83 \text{ x } 10^3 \text{ J/mol})/298.15 \text{ K} = -958.68 \frac{\text{J}}{\text{K} \cdot \text{ mol-rxn}}$$
$$\Delta_{\mathbf{r}} \mathbf{S}^{\circ} \text{ (universe)} = \Delta_{\mathbf{r}} \mathbf{S}^{\circ} \text{ (system)} + \Delta_{\mathbf{r}} \mathbf{S}^{\circ} \text{ (surroundings)} = 163.3 + -958.68$$

= -795.4
$$\frac{J}{K \cdot \text{mol-rxn}}$$
 Since this value is less than zero, the process is not spontaneous.

13. Using Table 19.2 classify each of the reactions:

(a) $\Delta H^{\circ}_{system} = -, \Delta_r S^{\circ}_{system} = -$ Product-favored at lower T

(b) $\Delta H^{\circ}_{system} = +, \Delta_r S^{\circ}_{system} = -$ Not product-favored under any conditions

Gibbs Free Energy

15. Calculate $\Delta_r G^\circ$ for :

(a) 2 Pb (s) + O₂ (g)
$$\rightarrow$$
 2 PbO (s)
 $\Delta_r H^\circ = (2 \text{ mol})(-219 \frac{\text{kJ}}{\text{mol}}) - [0 + 0] = -438 \text{ kJ}$
 $\Delta_r S^\circ = (2 \text{ mol})(66.5 \frac{\text{J}}{\text{K} \cdot \text{mol}}) - [(2 \text{ mol})(64.81 \frac{\text{J}}{\text{K} \cdot \text{mol}}) + (1 \text{ mol})(205.07 \frac{\text{J}}{\text{K} \cdot \text{mol}})] = -201.7 \text{ J/K}$
 $\Delta_r G^\circ = \Delta_r H^\circ - T \Delta_r S^\circ$

$$= -438 \text{ kJ} - (298.15 \text{ K})(-201.7 \text{ J/K})(\frac{1.000 \text{ kJ}}{1000. \text{ J}}) = -378 \text{ kJ}$$

Reaction is product-favored since $\Delta G < 0$. With the very large negative ΔH , the process is enthalpy driven.

(b) $NH_3(g) + HNO_3(aq) \rightarrow NH_4NO_3(aq)$

$$\begin{split} \Delta_r H^\circ &= (1 \text{ mol})(-339.87 \, \frac{kJ}{mol}) - [(1 \text{ mol})(-45.90 \, \frac{kJ}{mol}) + (1 \text{ mol})(-207.36 \, \frac{kJ}{mol}] = -86.61 \text{ kJ} \\ \Delta_r S^\circ &= (1 \text{ mol})(259.8 \, \frac{J}{K^\bullet \text{mol}}) - [(1 \text{ mol})(146.4 \, \frac{J}{K^\bullet \text{mol}})] = -79.4 \, \frac{J}{K^\bullet \text{ mol-rxn}} \\ &[(1 \text{ mol})(192.77 \, \frac{J}{K^\bullet \text{mol}}) + (1 \text{ mol})(146.4 \, \frac{J}{K^\bullet \text{mol}})] = -79.4 \, \frac{J}{K^\bullet \text{ mol-rxn}} \\ \Delta_r G^\circ &= \Delta_r H^\circ - T \Delta_r S^\circ = -86.61 \text{ kJ} - (298.15 \text{ K})(-79.4 \text{ J/K})(\frac{1.000 \text{ kJ}}{1000. \text{ J}}) = -62.9 \, \frac{kJ}{\text{mol-rxn}} \end{split}$$

Reaction is product-favored since $\Delta G < 0$. With the very large negative ΔH , the process is enthalpy driven.

17. Calculate the molar free energies of formation for: (a) CS₂ (g) The reaction is: C (graphite) + 2 S (s,rhombic) \rightarrow CS₂ (g) $\Delta_{\rm r} {\rm H}^{\circ} = (1 \text{ mol})(116.7 \frac{{\rm kJ}}{{\rm mol}}) - [0 + 0] = +116.7 \text{ kJ}$ $\Delta_{\rm r} {\rm S}^{\circ} = (1 \text{ mol})(237.8 \frac{{\rm J}}{{\rm K} \bullet {\rm mol}}) - [(1 \text{ mol})(5.6 \frac{{\rm J}}{{\rm K} \bullet {\rm mol}}) + (2 \text{ mol})(32.1 \frac{{\rm J}}{{\rm K} \bullet {\rm mol}})]$ = +168.0 J/K $\Delta_{\rm f}G^{\circ} = \Delta_{\rm f}H^{\circ} - T\Delta_{\rm r}S^{\circ} = (\ 116.7\ \rm kJ) - (298.15\ \rm K)(\ 168.0\ \frac{\rm J}{\rm K})(\ \frac{1.000\ \rm kJ}{1000\ \rm L})$ = + 66.6 kJAppendix value: 66.61 kJ/mol (b) NaOH (s) The reaction is: Na (s) + $\frac{1}{2}$ O₂(g) + $\frac{1}{2}$ H₂(g) \rightarrow NaOH (s) $\Delta_{\rm r} {\rm H}^{\circ} = (1 \text{ mol})(-425.93 \, \frac{{\rm kJ}}{{\rm mol}}) - [0 + 0 + 0] = -425.93 \, \frac{{\rm kJ}}{{\rm mol} \, {\rm ryn}}$ $\Delta_{\rm r} {\rm S}^{\circ} = (1 \text{ mol})(64.46 \frac{{\rm J}}{{\rm K} \bullet {\rm mol}}) [(1 \text{ mol})(51.21 \frac{J}{K \bullet \text{ mol}}) + (\frac{1}{2} \text{ mol})(205.07 \frac{J}{K \bullet \text{ mol}}) + (\frac{1}{2} \text{ mol})(130.7 \frac{J}{K \bullet \text{ mol}})]$ $= -154.6 \frac{J}{K \cdot \text{mol-ryn}}$ $\Delta_{\rm r} \, {\rm G}^\circ \ = \ \Delta_{\rm r} {\rm H}^\circ \ - \, {\rm T} \Delta_{\rm r} {\rm S}^\circ \ = (\ -425.93 \ {\rm kJ}) - (298.15 \ {\rm K})(\ -154.6 \ {\rm J/K})(\ \frac{1.000 \ {\rm kJ}}{1000 \ {\rm I}} \)$ = -379.82 kJAppendix value: -379.75 kJ/mol (c) ICl (g) The reaction is: $\frac{1}{2}$ I₂ (g) + $\frac{1}{2}$ Cl₂ (g) \rightarrow ICl (g) $\Delta_{\rm r} \, {\rm H}^{\circ} = (1 \, {\rm mol})(+17.51 \, \frac{{\rm kJ}}{{\rm mol}}) - [0 + 0] = +17.51 \, \frac{{\rm kJ}}{{\rm mol-rxn}}$ $\Delta_{\rm r} {\rm S}^{\circ} = (1 \text{ mol})(247.56 \frac{{\rm J}}{{\rm K} \cdot {\rm mol}}) \left[\left(\frac{1}{2} \text{mol}\right)(116.135 \frac{J}{K \bullet \text{mol}}) + \left(\frac{1}{2} \text{mol}\right)(223.08 \frac{J}{K \bullet \text{mol}})\right]$ = +77.95 $\frac{J}{K \cdot \text{mol-ryp}} J/K$

$$\Delta_{\rm r} \, {\rm G}^{\circ} = \Delta_{\rm r} \, {\rm H}^{\circ} - {\rm T} \Delta_{\rm r} \, {\rm S}^{\circ} = (+17.51 \text{ kJ} \,) - (298.15 \text{ K})(+77.95 \text{ J/K})(\frac{1.000 \text{ kJ}}{1000. \text{ J}} \,)$$

= - 5.73 kJ Appendix value: - 5.73 kJ/mol

Free Energy of Formation

19. Calculate $\Delta_r G^\circ$ for the following equations. Are they product-favored?

(a) 2 K (s) + Cl₂ (g) → 2 KCl (s)

$$\Delta_{\rm r} G^{\circ} = [2 \bullet \Delta_{\rm f} G^{\circ} \operatorname{KCl}(s)] - [1 \bullet \Delta_{\rm f} G^{\circ} \operatorname{Cl}_2(g) + 2 \bullet \Delta_{\rm f} G^{\circ} \operatorname{K}(s)]$$

$$= [(2 \operatorname{mol})(-408.77 \frac{\text{kJ}}{\text{mol}}] - [(1 \operatorname{mol})(0 \frac{\text{kJ}}{\text{mol}}) + (2 \operatorname{mol})(0 \frac{\text{kJ}}{\text{mol}})]$$

$$= -817.54 \text{ kJ}$$

With a $\Delta G < 0$, the reaction is product-favored.

(b) 2 CuO (s)
$$\rightarrow$$
 2 Cu (s) + O₂ (g)

$$\Delta_{\rm r} G^{\circ} = [2 \bullet \Delta_{\rm f} G^{\circ} Cu(s) + \Delta_{\rm f} G^{\circ} O_2(g)] - [2 \bullet \Delta_{\rm f} G^{\circ} CuO(s)]$$

$$\Delta_{\rm r} G^{\circ} = [(2 \text{ mol})(0 \frac{\text{kJ}}{\text{mol}}) + (1 \text{ mol})(0 \frac{\text{kJ}}{\text{mol}})] - [(2 \text{mol})(-128.3 \frac{\text{kJ}}{\text{mol}})]$$

$$= + 256.6 \text{ kJ}$$

With a $\Delta G > 0$, the reaction is not product-favored.

(c) 4 NH₃ (g) + 7 O₂ (g)
$$\rightarrow$$
 4 NO₂ (g) + 6 H₂O (g)
 $\Delta_{\rm r} G^{\circ} = [4 \cdot \Delta G^{\circ} f \operatorname{NO}_2(g) + 6 \cdot \Delta G^{\circ} f \operatorname{H}_2O(g)] - [4 \cdot \Delta G^{\circ} f \operatorname{NH}_3(g) + 7 \cdot \Delta G^{\circ} f \operatorname{O}_2(g)]$
 $\Delta_{\rm r} G^{\circ} = [(4 \operatorname{mol})(+51.23 \frac{\mathrm{kJ}}{\mathrm{mol}}) + (6 \operatorname{mol})(-228.59 \frac{\mathrm{kJ}}{\mathrm{mol}}] - [(4 \operatorname{mol})(-16.37 \frac{\mathrm{kJ}}{\mathrm{mol}}) + (7 \operatorname{mol})(0 \frac{\mathrm{kJ}}{\mathrm{mol}})] = -1101.14 \mathrm{kJ}$

With a $\Delta G < 0$, the reaction is product-favored.

21. Value for $\Delta_f G^\circ$ of BaCO₃(s) :

$$\begin{split} \Delta_{\rm r} {\rm G}^\circ &= [\Delta_{\rm f} {\rm G}^\circ \ {\rm BaO}({\rm s}) \ + \ \Delta_{\rm f} {\rm G}^\circ \ {\rm CO}_2({\rm g})] \ - \ [\Delta_{\rm f} {\rm G}^\circ \ {\rm BaCO}_3({\rm s})] \\ &+ 219.7 \ {\rm kJ} = [(1 \ {\rm mol})(-520.38 \ \frac{{\rm kJ}}{{\rm mol}}) + (1 \ {\rm mol})(-394.359 \ \frac{{\rm kJ}}{{\rm mol}})] \ - \ \Delta {\rm G}^\circ_{\rm f} \ {\rm BaCO}_3({\rm s}) \\ &+ 219.7 \ {\rm kJ} = -914.74 \ {\rm kJ} \ - \ \Delta_{\rm f} {\rm G}^\circ \ {\rm BaCO}_3({\rm s}) \\ &- 1134.4 \ {\rm kJ/mol} = + \ \Delta_{\rm f} {\rm G}^\circ \ {\rm BaCO}_3({\rm s}) \end{split}$$

Effect of Temperature on ΔG

23. Entropy-favored or Enthalpy-favored reactions?

(a) N₂ (g) + 2 O₂ (g) \rightarrow 2 NO₂ (g) $\Delta_{\rm r} {\rm H}^{\circ} = (2 \text{ mol})(+33.1 \frac{{\rm kJ}}{{\rm mol}}) - [0 + 0] = +66.2 \frac{{\rm kJ}}{{\rm mol} \cdot {\rm rxn}}$ $\Delta_{\rm r} {\rm S}^{\circ} = (2 \text{ mol})(+240.04 \frac{{\rm J}}{{\rm K} \cdot {\rm mol}}) - [(1 {\rm mol})(+205.07 \frac{{\rm J}}{{\rm K} \cdot {\rm mol}})] = -121.62 \frac{{\rm J}}{{\rm K} \cdot {\rm mol} \cdot {\rm rxn}}$ $\Delta_{\rm r} {\rm G}^{\circ} = (2 {\rm mol})(51.23 \frac{{\rm kJ}}{{\rm mol}}) - [(1 {\rm mol})(0 \frac{{\rm kJ}}{{\rm mol}}) + (1 {\rm mol})(0 \frac{{\rm kJ}}{{\rm mol}})] = 102.5 {\rm kJ}$

The reaction is **not** entropy OR enthalpy favored. There is **no** T at which $\Delta G < 0$. (b) 2 C (s) + O₂ (g) \rightarrow 2 CO (g)

$$\begin{split} \Delta_{\Gamma} H^{\circ} &= (2 \text{ mol})(-110.525 \ \frac{kJ}{\text{mol}}) - [0+0] = -221.05 \frac{kJ}{\text{mol-rxn}} \\ \Delta_{\Gamma} S^{\circ} &= (2 \text{ mol})(+197.674 \ \frac{J}{K \bullet \text{mol}}) - \\ &[(2 \text{ mol})(+5.6 \ \frac{J}{K \bullet \text{mol}}) + (1 \text{mol})(+205.07 \ \frac{J}{K \bullet \text{mol}})] = +179.1 \frac{J}{K \bullet \text{mol-rxn}} \\ \Delta_{\Gamma} G^{\circ} &= (2 \text{ mol})(-137.168 \frac{kJ}{\text{mol}}) - [(1 \text{ mol})(0 \frac{kJ}{\text{mol}}) + (1 \text{ mol})(0 \frac{kJ}{\text{mol}})] \\ &= -274.336 \text{ kJ} \end{split}$$

This reaction is **both** entropy- and enthalpy-favored at all temperatures.

(c) CaO (s) + CO₂ (g)
$$\rightarrow$$
 CaCO₃ (s)

$$\Delta_{\Gamma} H^{\circ} = (1 \text{ mol})(-1207.6 \frac{\text{kJ}}{\text{mol}}) - [(1 \text{ mol})(-635.0 \frac{\text{kJ}}{\text{mol}}) + (1 \text{ mol})(-393.509 \frac{\text{kJ}}{\text{mol}})]$$

$$= -179.0 \frac{\text{kJ}}{\text{mol-rxn}}$$

$$\Delta_{\Gamma} S^{\circ} = (1 \text{ mol})(+91.7 \frac{\text{J}}{\text{K} \cdot \text{mol}}) - [(1 \text{ mol})(+213.74 \frac{\text{J}}{\text{K} \cdot \text{mol}})] = -160.2 \frac{\text{J}}{\text{K} \cdot \text{mol-rxn}}$$

$$\Delta_{\rm r} {\rm G}^{\circ} = (1 \ {\rm mol})(-1129.16 \ {{\rm kJ}\over{\rm mol}}) \ -$$

$$[(1 \text{mol})(-603.42 \frac{\text{kJ}}{\text{mol}}) + (1 \text{mol})(-394.359 \frac{\text{kJ}}{\text{mol}})] = -131.4 \frac{\text{kJ}}{\text{mol-rxn}}$$

This reaction is *enthalpy-favored* and will be spontaneous at low temperatures.

(d) 2 NaCl (s) \rightarrow 2 Na (s) + Cl₂ (g)

$$\begin{split} \Delta_{\rm r} {\rm H}^{\circ} &= [(2 \ {\rm mol})(\ 0 \ \frac{{\rm kJ}}{{\rm mol}}) + (1 {\rm mol})(0 \ \frac{{\rm kJ}}{{\rm mol}})] - (2 {\rm mol})(-411.12 \ \frac{{\rm kJ}}{{\rm mol}})] = +\ 822.24 \ \frac{{\rm kJ}}{{\rm mol}-{\rm rxn}} \\ \Delta_{\rm r} {\rm S}^{\circ} &= [(2 \ {\rm mol})(\ +51.21 \ \frac{{\rm J}}{{\rm K} \cdot {\rm mol}}) + (1 {\rm mol})(+223.08 \ \frac{{\rm J}}{{\rm K} \cdot {\rm mol}})] \ - \\ &\qquad (2 {\rm mol})(+72.11 \ \frac{{\rm J}}{{\rm K} \cdot {\rm mol}})] = +\ 181.28 \ \frac{{\rm J}}{{\rm K} \cdot {\rm mol}-{\rm rxn}} \\ \Delta_{\rm r} {\rm G}^{\circ} &= [(2 \ {\rm mol})(\ 0 \ \frac{{\rm kJ}}{{\rm mol}}) + (1 {\rm mol})(\ 0 \ \frac{{\rm kJ}}{{\rm mol}})] \ - (2 {\rm mol})(-384.04 \ \frac{{\rm kJ}}{{\rm mol}})] = +768.08 \ \frac{{\rm kJ}}{{\rm mol}-{\rm rxn}} \end{split}$$

This reaction is *entropy-favored* and will be spontaneous at high temperatures.

25. For the decomposition of MgCO₃ (s) \rightarrow MgO (s) + CO₂ (g):

(a)
$$\Delta_{\Gamma} S^{\circ}(system) = [1 \bullet S^{\circ} MgO(s) + 1 \bullet S^{\circ} CO_2(g)] - 1 \bullet S^{\circ} MgCO_3(s)$$

$$= [(1 \text{mol})(26.85 \frac{\text{J}}{\text{K} \cdot \text{mol}}) + (1 \text{mol})(213.74 \frac{\text{J}}{\text{K} \cdot \text{mol}})] - (1 \text{mol})(65.84 \frac{\text{J}}{\text{K} \cdot \text{mol}})$$
$$= +174.75 \frac{\text{J}}{\text{K} \cdot \text{mol}}$$

Calculate $\Delta H^{\circ}(system)$:

$$\Delta H^{\circ}(system) = [1 \bullet \Delta H^{\circ} MgO(s) + 1 \bullet \Delta H^{\circ} CO_{2}(g)] - 1 \bullet \Delta H^{\circ} MgCO_{3}(s)$$

= [(1 mol)(-601.24 $\frac{kJ}{mol}$) +(1 mol)(-393.509 $\frac{kJ}{mol}$)] - (1 mol)(-1111.69 $\frac{kJ}{mol}$)
= +116.94 $\frac{kJ}{mol-rxn}$

(b)
$$\Delta_{\rm T} G^\circ = -\Delta H^\circ - T \bullet S^\circ = +116.94 \frac{\rm kJ}{\rm mol-rxn} - (298 \text{ K})(+174.75 \frac{\rm J}{\rm K \bullet \ mol-rxn})(\frac{1 \text{ kJ}}{1000 \text{ J}}) =$$

= +64.87 $\frac{\rm kJ}{\rm mol-rxn}$, so not spontaneous at 298 K

(c) From Table 19.2 we observe that this type of reaction ($\Delta H = +$ and $\Delta_r S = +$) is spontaneous at higher T (product-favored).

Free Energy and Equilibrium Constants

27. Calculate K_p for the reaction:

 $\frac{1}{2} N_2(g) + \frac{1}{2} O_2(g) \rightarrow NO(g) \qquad \Delta_r G^\circ = + 86.58 \text{ kJ/mol NO}$ $\Delta_r G^\circ = -RT \ln K_p \quad \text{so } 86.58 \text{ x } 10^3 \text{ J/mol} = - (8.3145 \frac{\text{J}}{\text{K} \cdot \text{mol}})(298.15 \text{ K}) \ln K_p$ $- 34.926 = \ln K_p \quad \text{and } 6.8 \text{ x } 10^{-16} = K_p$ Note that the 4 value of A G° results in a value of K, which is small, respectnts are favored.

Note that the + value of $\Delta_r G^\circ$ results in a value of K_p which is small--reactants are favored. A negative value would result in a large K_p -- a process in which the products were favored.

29. From the ΔG° and Kp, determine if the hydrogenation of ethylene is product-favored: Using $\Delta_f G^{\circ}$ data from the Appendix: $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$

$$\Delta_{\rm r}G^{\circ} = (1 \text{ mol})(-31.89 \frac{\rm kJ}{\rm mol}) - [(1 \rm mol)(68.35 \frac{\rm kJ}{\rm mol}) + (1 \rm mol)(0 \frac{\rm kJ}{\rm mol})] = -100.24 \text{ kJ}$$

and since $\Delta_{\rm r}G^{\circ} = -RT \ln K_{\rm p}$

$$-100.24 \text{ x } 10^3 \text{ J/mol} = -(8.3145 \text{ } \frac{\text{J}}{\text{K} \cdot \text{mol}})(298.15 \text{ K}) \ln \text{K}_{\text{p}}$$

 $40.436 = \ln K_p$ and $K_p = 3.64 \times 10^{17}$

The negative value of ΔG means the reaction is product-favored. The large value of ΔG means that Kp is very large.

General Questions

- 31. Compound with higher standard entropy:
 - (a) HF (g) vs HCl (g) vs HBr (g): Entropy increases with molecular size (mass)
 - (b) NH₄Cl (s) vs NH₄Cl (aq): Entropy of solutions is greater than that of the solid.
 - (c) N_2 (g) vs C_2H_4 (g): Entropy increases with molecular complexity
 - (d) NaCl(s) vs NaCl (g): Entropy of the gaseous state is very high. The solid state has lower entropy.
- 33. For the reaction C₆H₆ (ℓ) + 3 H₂(g) \rightarrow C₆H₁₂(ℓ), Δ_r H° = 206.7 kJ, and Δ_r S° = -361.5 J/K

Is the reaction spontaneous under standard conditions? Calculating ΔG° will answer this question.

 $\Delta_{\mathbf{r}} \mathbf{G}^{\circ} = \Delta_{\mathbf{r}} \mathbf{H}^{\circ} - \mathbf{T} \Delta_{\mathbf{r}} \mathbf{S}^{\circ}$

$$= -206.7 \text{ kJ} - (298.15 \text{ K})(-361.5 \frac{\text{J}}{\text{K}})(\frac{1.000 \text{ kJ}}{1000 \text{ J}}) = \text{ kJ}$$
$$= -206.7 \text{ kJ} - (-107.8 \text{ kJ}) = -98.9 \frac{\text{kJ}}{\text{mol-rxn}}$$

The negative value for $\Delta_r G^\circ$ tells us that the reaction would be spontaneous (product-favored) under standard conditions. The negative value for $\Delta_r H^\circ$ tells us that the reaction is enthalpy-driven.

35. Calculate $\Delta_r H^{\circ}_{and} \Delta_r S^{\circ}$ for the combustion of ethane:

	$C_{2}H_{6}(g)$	+	$7/2 \text{ O}_2(g) \rightarrow 2$	CO ₂ (g) +	3 H2O (g)
$\Delta_{f}H^{\circ}$ (kJ/mol)	-83.85		0	-393.509	-241.83
S° (J/K•mol)	+229.2	+2	05.07	+213.74	+188.84

$$\begin{split} \Delta_{r} H^{\circ} &= \left[2 \bullet \Delta H^{\circ}_{f} CO_{2}(g) + 3 \bullet \Delta H^{\circ}_{f} H_{2}O(g) \right] - \left[1 \bullet \Delta H^{\circ}_{f} C_{2}H_{6}(g) + 7/2 \bullet \Delta H^{\circ}_{f} O_{2}(g) \right] \\ &= \left[(2 \text{mol})(-393.509 \ \frac{kJ}{\text{mol}}) + (3 \text{mol})(-241.83 \ \frac{kJ}{\text{mol}}) \right] - \left[(1 \text{mol})(-83.85 \text{ kJ/mol}) + 0 \right] \\ &= -1428.66 \ \frac{kJ}{\text{mol}-\text{rxn}} \\ \Delta_{r} S^{\circ} &= \left[2 \bullet S^{\circ} CO_{2}(g) + 3 \bullet S^{\circ} H_{2}O(g) \right] - \left[1 \bullet S^{\circ} C_{2}H_{6}(g) + 7/2 \bullet S^{\circ} O_{2}(g) \right] \\ &= \left[(2 \text{ mol})(213.74 \ \frac{J}{K \bullet \text{mol}}) + (3 \text{ mol})(188.84 \ \frac{J}{K \bullet \text{mol}}) \right] - \\ &\left[(1 \text{ mol})(229.2 \ \frac{J}{K \bullet \text{mol}}) + (7/2 \text{ mol})(205.07 \ \frac{J}{K \bullet \text{mol}}) \right] = +47.1 \ \frac{J}{K \bullet \text{mol}-\text{rxn}} \\ \Delta_{r} S^{\circ}(\text{surroundings}) &= \frac{-\Delta H \text{ rxn}}{T} \quad (\text{Assuming we're at } 298 \text{ K}) \\ &= \frac{1428.66 \text{ kJ}}{298.15 \text{ K}} \bullet \frac{1000 \text{ J}}{1 \text{ kJ}} = 4791.7 \text{ J/K} \\ \text{so } \Delta_{r} S^{\circ}(\text{system}) + \Delta_{r} S^{\circ}(\text{surroundings}) = +47.1 \text{ J/K} + 4791.7 \text{ J/K} \\ &= 4838.8 \text{ J/K} \text{ or } +4840 \frac{J}{K \bullet \text{ mol}-\text{rxn}} (3 \text{ sf}) \end{split}$$

Since $\Delta_r H^\circ = -$ and $\Delta_r S^\circ = +$, the process is product-favored.

This calculation is consistent with our expectations. We know that hydrocarbons burn completely (in the presence of sufficient oxygen) to produce carbon dioxide and water.

37. (a) Calculate $\Delta_r G^\circ$ for $NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$ 192.77186.2- 45.90- 92.31 S° (J/K•mol) 94.85 - 314..55 $\Delta_{\rm f} {\rm H}^{\circ} ({\rm kJ/mol})$ $\Delta_{\mathbf{r}} S^{\circ} = 1 \bullet S^{\circ} \text{ NH4Cl } (s) - [1 \bullet S^{\circ} \text{ NH3} (g) + 1 \bullet S^{\circ} \text{ HCl } (g)]$ $= (1 \text{ mol})(94.85 \text{ J/K} \cdot \text{mol}) - [(1 \text{ mol})(192.77 \text{ J/K} \cdot \text{mol}) +$ $(1 \text{ mol})(186.2 \text{ J/K} \bullet \text{mol})] = -284.1 \text{ J/K}$ $\Delta_{\mathbf{r}} \mathbf{H}^{\circ} = \mathbf{1} \bullet \Delta_{\mathbf{f}} \mathbf{H}^{\circ} \mathbf{N} \mathbf{H} \mathbf{4} \mathbf{Cl} (\mathbf{s}) - [\mathbf{1} \bullet \Delta_{\mathbf{f}} \mathbf{H}^{\circ} \mathbf{N} \mathbf{H} \mathbf{3} (\mathbf{g}) + \mathbf{1} \bullet \Delta_{\mathbf{f}} \mathbf{H}^{\circ} \mathbf{H} \mathbf{Cl} (\mathbf{g})]$ = (1 mol)(-314.55 kJ/mol) - [(1 mol)(-45.90 kJ/mol) + (1 mol)(-92.31 kJ/mol)]= -176.34 kJ $\Delta_{\mathbf{r}} \mathbf{G}^{\circ} = \Delta_{\mathbf{r}} \mathbf{H}^{\circ} - \mathbf{T} \Delta_{\mathbf{r}} \mathbf{S}^{\circ}$ $= -176.34 \text{ kJ} - (298.15 \text{ K})(-284.1 \text{ J/K})(\frac{1.000 \text{ kJ}}{1000 \text{ J}})$ $= -176.01 + 84.67 = -91.64 \frac{\text{kJ}}{\text{mol-rxn}}$ $\Delta_{\rm r} S^{\circ}(\text{surroundings}) = \frac{-\Delta_{\rm r} H}{T} \text{ (Assuming we're at 298 K)}$ $=\frac{176.34 \text{ kJ}}{298.15 \text{ K}} \cdot \frac{1000 \text{ J}}{1 \text{ kI}} = 591.45 \text{ J/K}$ so $\Delta_{r}S^{\circ}(system) + \Delta_{r}S^{\circ}(surroundings) = -284.12 \text{ J/K} + 591.45 \text{ J/K} = +307.3 \frac{\text{J}}{\text{K} \cdot \text{mol-rxn}}$

The value for $\Delta_r G^\circ$ for the equation is negative, indicating that is product-favored. The reaction is enthalpy driven ($\Delta_r H < 0$).

(b) Calculate K_p for the reaction:

 $\Delta_{\rm r} G = -RT \ln K_{\rm p} \text{ so } -91.64 \text{ x } 10^3 \text{ J/mol} = -(8.3145 \frac{\text{J}}{\text{K} \cdot \text{mol}})(298.15 \text{ K}) \ln K_{\rm p}$ 36.97 = ln K_p and 1.13 x 10¹⁶ = K_p

39. Calculate K_p for the formation of methanol from its' elements: Begin by calculating a $\Delta_r G^\circ$

$$\begin{split} &\Delta_{\mathbf{r}} G^{\circ} = \Delta_{\mathbf{f}} G_{CH3OH}(\ell) - [\Delta_{\mathbf{f}} G_{C}(\text{graphite}) + 1/2 \bullet \Delta_{\mathbf{f}} G_{O2}(g) + 2 \bullet \Delta_{\mathbf{f}} G_{H2}(g)] \\ &\Delta_{\mathbf{r}} G^{\circ} = -166.14 \text{ kJ} - (0 \text{ kJ} + 0 \text{ kJ} + 0 \text{ kJ}) = -166.14 \text{ kJ} \\ &\Delta_{\mathbf{r}} G^{\circ} = -\text{RT} \ln K_{p} \\ &-166.1 \text{ x } 10^{3} \text{ J/mol} = -(8.3145 \frac{\text{J}}{\text{K} \bullet \text{mol}})(298.15 \text{ K}) \ln K_{p} \end{split}$$

 $67.00 = \ln K_p \text{ and } 1.3 \ge 10^{29} = K_p$

The large value of K_p indicates that this process is product-favored at 298 K. Judging by the relative numbers of gaseous particles, (without doing a calculation), one can see that ΔrS for the reaction is < 0, so higher temperatures would reduce the value of K_p .

Regarding the connection between ΔG° and K, the more negative the value of ΔG° , the larger the value of K.

41. Calculate the $\Delta_r S^\circ$ for the vaporization of ethanol at 78.0 °C.

The
$$\Delta_{\mathbf{r}} S = \frac{\Delta_{vap} H}{T} = \frac{39.3 \text{ x } 10^3 \text{ J}}{351 \text{ K}} = 112 \frac{\text{J}}{\text{K} \cdot \text{ mol-rxn}}$$

43. For the decomposition of phosgene:

 $\Delta_{\mathbf{r}}\mathbf{H}^{\circ} = [\Delta_{\mathbf{f}}\mathbf{H}^{\circ}\mathrm{CO}(g) + \Delta_{\mathbf{f}}\mathbf{H}^{\circ}\mathrm{Cl}_{2}(g)] - [\Delta_{\mathbf{f}}\mathbf{H}^{\circ}\mathrm{COCl}_{2}(g)]$

 $\Delta_{\rm r} {\rm H}^{\circ} = [(1 \text{ mol.})(-110.525 \frac{\rm kJ}{\rm mol}) + (1 \text{ mol.})(0 \frac{\rm kJ}{\rm mol})] - [(1 \text{ mol.})(-218.8 \frac{\rm kJ}{\rm mol})] = 108.275 \frac{\rm kJ}{\rm mol}$ $\Delta_{\rm r} {\rm S}^{\circ} = [{\rm S}^{\circ} \ {\rm CO} \ ({\rm g}) + {\rm S}^{\circ} \ {\rm Cl}_2 \ ({\rm g})] - [{\rm S}^{\circ} \ {\rm COCl}_2({\rm g})]$

$$\Delta_{\mathbf{r}} \mathbf{S}^{\circ} = [(1 \text{ mol})(197.674 \frac{J}{K \bullet \text{mol}}) + (1 \text{ mol})(223.07 \frac{J}{K \bullet \text{mol}})] - [(1 \text{ mol})(283.53 \frac{J}{K \bullet \text{mol}})] = 137.2 \frac{J}{K \bullet \text{mol-rxn}}$$

Using the $\Delta_r S$ data, we can see that raising the temperature will favor the endothermic decomposition of this substance.

45. For the reaction of sodium with water: Na (s) + H₂O(ℓ) \rightarrow NaOH(aq) + $\frac{1}{2}$ H₂ (g)

Predict signs for $\Delta_r H^\circ$ and $\Delta_r S^\circ$:

This one seems easy! The reaction of sodium with water gives off heat, and the heat frequently ignites the hydrogen gas that is concomitantly evolved. $\Delta_r H^\circ = -$.

Regarding entropy, the system changes from one with a solid (low entropy) and a liquid (higher entropy) to a solution (*frequently* higher entropy than liquid) and a gas (high entropy). So we would predict that the entropy would increase, i.e. $\Delta_r S^\circ = +$.

Now for the calculation:

$$\Delta_{\rm f} {\rm H}^{\circ} = [1 \bullet \Delta_{\rm f} {\rm H}^{\circ} \operatorname{NaOH}({\rm aq}) + \frac{1}{2} \bullet \Delta_{\rm f} {\rm H}^{\circ} {\rm H}_{2}({\rm g})] - [1 \bullet \Delta_{\rm f} {\rm H}^{\circ} \operatorname{Na}({\rm s}) + 1 \bullet \Delta_{\rm f} {\rm H}^{\circ} {\rm H}_{2}{\rm O}(\ell)]$$

= [(1 mol)(-469.15 $\frac{{\rm kJ}}{{\rm mol}}$)+ ($\frac{1}{2}$ mol)(0)] - [(1 mol)(0) + (1 mol)(-285.83 $\frac{{\rm kJ}}{{\rm mol}})]$

$$= -183.32 \frac{kJ}{mol-rxn}$$

$$\Delta_{r}S^{\circ} = [1 \cdot S^{\circ} NaOH(aq) + \frac{1}{2} \cdot S^{\circ} H_{2}(g)] - [1 \cdot S^{\circ} Na(s) + 1 \cdot S^{\circ} H_{2}O(\ell)]$$

$$= [(1 mol)(48.1 \frac{J}{K \cdot mol}) + (\frac{1}{2} mol)(130.7 \frac{J}{K \cdot mol})] - [(1 mol)(51.21 \frac{J}{K \cdot mol}) + (1 mol)(69.95 \frac{J}{K \cdot mol})]$$

$$= -7.7 \frac{J}{K \cdot mol-rxn}$$

As expected, the $\Delta_r H^\circ$ for the reaction is negative! The surprise comes in the calculation for $\Delta_r S^\circ$. While we anticipate the sign to be positive, we find a slightly negative number—reflecting the order (hence a decrease in entropy) that can occur as solutions occur.

47. For the reaction :
$$BCl_3(g) + 3/2 H_2(g) \rightarrow B(s) + 3HCl(g)$$

 $S^{\circ}(\frac{J}{K \bullet mol}) 290.17 130.7 5.86 186.2$
 $\Delta_f H^{\circ}(\frac{kJ}{mol}) -402.96 0 0 -92.31$
 $\Delta_r H^{\circ} = [3 \bullet \Delta_f H^{\circ} HCl(g) + 1 \bullet \Delta_f H^{\circ} B(s)] - [1 \bullet \Delta_f H^{\circ} BCl_3(g) + 3/2 \Delta_f H^{\circ} H_2(g)]$
 $\Delta_r H^{\circ} = [(3 \text{ mol})(-92.31 \frac{kJ}{mol}) + (1 \text{ mol})(0)] - [(1 \text{ mol})(-402.96 \frac{kJ}{mol}) + (3/2 \text{ mol})(0)]$
 $= 126.03 \frac{kJ}{mol-rxn}$
 $\Delta_r S^{\circ} = [3 \bullet S^{\circ} HCl(g) + 1 \bullet S^{\circ} B(s)] - [1 \bullet S^{\circ} BCl_3(g) + 3/2 S^{\circ} H_2(g)]$
 $\Delta_r S^{\circ} = [(3 \text{ mol})(186.2 \frac{J}{K \bullet mol}) + (1 \text{ mol})(5.86 \frac{J}{K \bullet mol})] - [(1 \text{ mol})(290.17 \frac{J}{K \bullet mol}))$
 $+ (3/2 \text{ mol})(130.7 \frac{J}{K \bullet mol})] = 78.2 \frac{J}{K \bullet \text{ mol} - rxn}$
 $\Delta_r G^{\circ} = \Delta_r H^{\circ} - T \Delta_r S^{\circ} = 126.03 \text{ kJ} - (298.15 \text{ K})(78.2 \frac{J}{K})((\frac{1.000 \text{ kJ}}{1000 \text{ J}}) = 103 \frac{kJ}{\text{ mol} - rxn}$

The reaction is not product-favored.

49. Calculate $\Delta_r G^\circ$ for conversion to NO₂ from N₂O₄:

 $\Delta_r G^\circ$ =- RTln K = - (8.3145 x 10⁻³ kJ/K•mol)(298 K) ln 0.14 = 4.87 kJ compare with the calculated $\Delta_f G^\circ$ values:

$$\Delta_{\rm f} G^{\circ} = 2 \Delta_{\rm f} G^{\circ} [NO_2 (g)] - \Delta_{\rm f} G^{\circ} [N_2O_4 (g)] = (2 \bullet 51.23 \text{ kJ/mol}) - (1 \bullet 97.73 \text{ kJ/mol}) = 4.73 \text{ kJ}$$

51. Calculate $\Delta_r G^\circ$ for conversion of butane to isobutane, given K = 2.50:

$$\Delta_{\rm r} {\rm G}^{\circ}$$
=- RTln K = - (8.3145 x 10⁻³ kJ/K•mol)(298 K) ln 2.50 = -2.27 $\frac{\rm kJ}{\rm mol-rxn}$

53. For the reaction: 2 SO₃ (g) → 2 SO₂ (g) + O₂ (g)

$$\Delta_{\rm r} {\rm H}^{\circ} = [2 \cdot \Delta_{\rm f} {\rm H}^{\circ} \operatorname{SO}_2(g) + 1 \cdot \Delta_{\rm f} {\rm H}^{\circ} \operatorname{O}_2(g)] - [2 \cdot \Delta_{\rm f} {\rm H}^{\circ} \operatorname{SO}_3(g)]$$

$$= [(2 \text{ mol})(-296.84 \frac{\rm kJ}{\rm mol}) + 0] - [(2 \text{ mol})(-395.77 \frac{\rm kJ}{\rm mol})] = 197.86 \text{ kJ}$$

$$\Delta_{\rm r} {\rm S}^{\circ} = [2 \cdot {\rm S}^{\circ} \operatorname{SO}_2(g) + 1 \cdot {\rm S}^{\circ} \operatorname{O}_2(g)] - [2 \cdot {\rm S}^{\circ} \operatorname{SO}_3(g)]$$

$$= [(2 \text{ mol})(248.21 \frac{\rm J}{\rm K \cdot mol}) + (1 \text{ mol})(205.07 \frac{\rm J}{\rm K \cdot mol})] - [(2 \text{ mol})(256.77 \frac{\rm J}{\rm K \cdot mol})]$$

$$= 187.95 \frac{\rm J}{\rm K \cdot mol \text{-rxn}}$$

(a) Is the reaction product-favored at 25 °C ?:

$$\Delta_{\rm r} G^{\circ} = \Delta_{\rm r} H^{\circ} - T \Delta_{\rm r} S^{\circ} = 197.86 \text{ kJ} - (298.15 \text{ K})(187.95 \frac{\text{J}}{\text{K}})(\frac{1.000 \text{ kJ}}{1000 \text{ J}}) = 141.82 \frac{\text{kJ}}{\text{mol-rxm}}$$

The reaction is not product-favored.

(b) The reaction can become product-favored if there is some T at which ΔrG°<0. To see if such a T is feasible, let's set ΔrG°=0 and solve for T! *Remember that the units of energy must be the same, so let's convert units of J (for the entropy term) into units of kJ* ΔrG°= ΔrH°- T ΔrS°

0 =
$$197.86 \text{ kJ} - T(0.18795 \frac{\text{kJ}}{\text{K}})$$

T = $\frac{197.86 \text{ kJ}}{0.18795 \frac{\text{kJ}}{\text{K}}}$ = 1052.7 K or $(1052.7 - 273.1) = 779.6 \text{ °C}$

- (c) The equilibrium constant for the reaction at 1500 °C. Since we know that
 - $\Delta_r G^{\circ} = \Delta_r H^{\circ} T \Delta_r S^{\circ} = RT ln K$, we can solve for K if we know $\Delta_r G^{\circ} at 1500 \ ^{\circ}C$

$$\Delta_{\rm r} G^{\circ} = \Delta_{\rm r} H^{\circ} - T \Delta_{\rm r} S^{\circ} = -RT \ln K$$

= 197.86 kJ - (1773 K)(187.95 J/K)($\frac{1.000 \text{ kJ}}{1000 \text{ J}}$) = -135.4 kJ

Substitute into the equation $(\Delta_{\Gamma} G^{\circ} = -RT \ln K)$:

$$-135.4 \text{ kJ} = -8.314 \frac{\text{J}}{\text{K} \cdot \text{mol}} \cdot \frac{1 \text{ kJ}}{1000 \text{ J}} \cdot 1773 \text{ K} \cdot \ln \text{ K}$$

K = 9.7 x 10³ or 1 x 10⁴ (1 sf)

55. Reaction: H2S (g) + 2 O2 (g)
$$\rightarrow$$
 H2SO4 (ℓ)
 $\Delta_{f}H^{\circ}(kJ/mol)$ -20.63 0 -814
 $S^{\circ}(J/K \bullet mol)$ 205.79 205.07 156.9
 $\Delta_{r}H^{\circ} = [(1 \text{ mol})(-814 \frac{kJ}{mol})] - [(1 \text{ mol})(-20.63 \frac{kJ}{mol}) + 0] = -793 \frac{kJ}{mol-rxn}$
 $\Delta_{r}S^{\circ} = [(1 \text{ mol})(156.9 \frac{J}{K \bullet mol})] - [(1 \text{ mol})(205.79 \frac{J}{K \bullet mol}) + (2 \text{ mol})(205.07 \frac{J}{K \bullet mol})]$
 $= -459.0 \frac{J}{K \bullet mol-rxn}$
 $\Delta_{r}G^{\circ} = \Delta_{f}H^{\circ} - T \Delta_{r}S^{\circ}$
 $= -793 \text{ kJ} - (298.15 \text{ K})(-459.0 \frac{J}{K})(\frac{1.000 \text{ kJ}}{1000 \text{ J}}) = -657 \frac{kJ}{mol-rxn}$
The reaction is product-favored at 25 °C ($\Delta G^{\circ} < 0$) and enthalpy-driven ($\Delta_{r}H^{\circ} < 0$)

57. Calculate the $\Delta_r G^\circ$ for the transition of S8 (rhombic) \rightarrow S8 (monoclinic) (a) At 80 °C $\Delta_r G^\circ = \Delta_r H^\circ - T \Delta_r S^\circ$

$$\Delta_r G^\circ = 3.213 \text{ kJ} - (353 \text{ K})(0.0087 \frac{\text{kJ}}{\text{K}}) = 0.14 \frac{\text{kJ}}{\text{mol-rxm}}$$

At 110 °C $\Delta_r G^\circ = \Delta_r H^\circ - T \Delta_r S^\circ$

$$\Delta_r G^\circ = 3.213 \text{ kJ} - (383 \text{ K})(0.0087 \frac{\text{kJ}}{\text{K}}) = -0.12 \frac{\text{kJ}}{\text{mol-rxn}}$$

The rhombic form of sulfur is the more stable at lower temperature, while the monoclinic form is the more stable at higher temperature. The transition to monoclinic form is product-favored at temperatures above 110 degrees C.

(b) The temperature at which $\Delta_r G^\circ = 0$:

$$\Delta_{\rm r} \, {\rm G}^\circ = \ 3.213 \, {\rm kJ} - ({\rm T})(0.0087 \, \frac{{\rm kJ}}{{\rm K}}) \text{ substituting: } 0 = \ 3.213 \, {\rm kJ} - ({\rm T})(0.0087 \, \frac{{\rm kJ}}{{\rm K}})$$
$${\rm T} = \frac{3.213 \, {\rm kJ}}{0.0087 \, \frac{{\rm kJ}}{{\rm K}}} = 370 \, {\rm K} = 96 \, {\rm ^\circ C}$$

IN THE LABORATORY

59. Is decomposition of silver(I) oxide product-favored at 25 °C ?

Calculate:
$$\Delta_r H^\circ$$
 and $\Delta_r S^\circ$:
 $\Delta_r H^\circ = ([4 \cdot \Delta_f H^\circ Ag(s)] + [1 \cdot \Delta_f H^\circ O_2(g)]) - [2 \cdot \Delta_f H^\circ [Ag_2O(s)]$
 $\Delta_r H^\circ = 0 \text{ kJ} - [2 \text{ mol} \cdot -31.1 \text{ kJ/mol}] = 62.2 \frac{\text{kJ}}{\text{mol-rxn}}$

320

and for $\Delta_r S^{\circ}$:

 $\Delta_{\mathbf{r}} \mathbf{S}^{\circ} = ([4 \bullet \mathbf{S}^{\circ} \mathbf{Ag}(\mathbf{s})] + [1 \bullet \mathbf{S}^{\circ} \mathbf{O2}(g)]) - [2 \bullet \mathbf{S}^{\circ} [\mathbf{Ag2O}(\mathbf{s})]$

 $\Delta_{\Gamma} S^{\circ} = ([4mol \bullet 42.55 \text{ J/K}\bullet mol] + [1mol \bullet 205.07 \text{ J/K}\bullet mol]) - [2mol \bullet 121.3 \text{ J/K}\bullet mol]$

= [170.2 J/K + 205.07 J/K] - [242.6 J/K] = +132.7 J/K

While enthalpic considerations do **not** favor product fomation, entropic considerations **do**. The Gibbs Free Energy change would be:

$$\Delta_{\mathbf{f}} \mathbf{G}^{\circ} = ([4 \bullet \Delta_{\mathbf{f}} \mathbf{G}^{\circ} \mathsf{Ag}(s)] + [1 \bullet \Delta_{\mathbf{f}} \mathbf{G}^{\circ} \mathsf{O}_{2}(g)]) - [2 \bullet \Delta_{\mathbf{f}} \mathbf{G}^{\circ} [\mathsf{Ag}_{2} \mathsf{O}(s)]$$

= $(0 \text{ kJ}) - (2 \text{ mol} \cdot -11.32 \text{ kJ/mol}) = 22.64 \text{ kJ}$, so this change **does not favor** product formation.

The signs of $\Delta_r H^\circ$ and $\Delta_r S^\circ$ indicate that there **may be** some T at which the reaction is product-favored. So let's calculate the temperature at which $\Delta_r G^\circ = 0$:

$$\Delta_{\rm T} \, {\rm G}^{\circ} = \ 62.2 \, {\rm kJ} - ({\rm T})(0.1327 \, \frac{{\rm kJ}}{{\rm K}}) \quad \text{Note the conversion of } \Delta {\rm S} \text{ units to } {\rm kJ}!$$

$$0 = \ 62.2 \, {\rm kJ} - ({\rm T})(0.1327 \, \frac{{\rm kJ}}{{\rm K}})$$

$${\rm T} = \ \frac{62.2 \, {\rm kJ}}{0.1327 \, \frac{{\rm kJ}}{{\rm K}}} = 469 \, {\rm K} = 196^{\circ} {\rm C}$$

At temperatures greater than 196 °C, the reaction would be product-favored.

61. Calculate $\Delta_f G^\circ$ for HI(g) at 350 °C, given the following equilibrium partial pressures: P(H₂)= 0.132 bar, P(I₂) = 0.295 bar, and P(HI) =1.61 bar. At 350 °C ,1 bar, I₂ is a gas.

$$1/2 \text{ H}_2(g) + 1/2 \text{ I}_2(g) \Leftrightarrow \text{HI}(g)$$

Calculate Kp: $\frac{P_{HI}}{P_{H2}^{1/2} \bullet P_{I2}^{1/2}} = \frac{1.61}{0.363 \bullet 0.543} = 8.16$

Knowing that $\Delta_{\mathbf{r}} \mathbf{G}^{\circ} = -\mathbf{RT} \ln \mathbf{K}$, we can solve:

$$\Delta_{\mathbf{r}} \mathbf{G}^{\circ} = -\mathbf{R} \mathbf{T} \ln \mathbf{K} = -(8.3145 \ \frac{\mathbf{J}}{\mathbf{K} \bullet \mathbf{mol}})(623.15 \mathbf{K}) \ln 8.16 = -10,873 \mathbf{J} \text{ or } -10.9 \text{ kJ/mol}$$

63. (a) Calculate $\Delta_r G^\circ$ and K for the reaction at 727 °C:

$$\Delta_{\mathbf{r}} \mathbf{G}^{\circ} = ([2 \bullet \Delta_{\mathbf{f}} \mathbf{G}^{\circ} \operatorname{CO}(g)] + [1 \bullet \Delta_{\mathbf{f}} \mathbf{G}^{\circ} \operatorname{TiC}(s)]) - ([1 \bullet \Delta_{\mathbf{f}} \mathbf{G}^{\circ} [\operatorname{TiO}_{2}(s)] + [3 \bullet \Delta_{\mathbf{f}} \mathbf{G}^{\circ} [\operatorname{C}(s)])$$

$$\Delta_{\mathbf{r}} \mathbf{G}^{\circ} = ([2 \operatorname{mol} \bullet -200.2 \text{ kJ/mol}] + [1 \operatorname{mol} \bullet -162.6 \text{ kJ/mol}]) - ([1 \operatorname{mol} \bullet -757.8 \text{ kJ/mol}] + [0])$$

$$= (-400.4 \text{ kJ} + -162.6 \text{ kJ}) - (-757.8 \text{ kJ}) = -563.0 \text{ kJ} + 757.8 \text{ kJ} = 194.8 \frac{\text{kJ}}{\text{mol-rxm}}$$

K would equal:

$$\Delta_{\rm r} {\rm G}^{\circ} = - {\rm RT} {\rm ln} {\rm K} \text{ and } 194.8 \text{ x } 10^3 {\rm J} = - (8.3145 \frac{{\rm J}}{{\rm K} \cdot {\rm mol}})(1000 {\rm K}) {\rm ln} {\rm K}$$

[Note the conversion of the energy units of ΔG to accommodate J in the value of R!]

$$\frac{194.8 \times 10^{3} \text{J}}{-(8.3145 \text{ } \frac{\text{J}}{\text{K} \cdot \text{mol}})(1000 \text{ K})} = \ln K = -23.43 \text{ and } \text{K} = 6.68 \times 10^{-11}$$

- (b) The value of K indicates that the reaction is not product-favored at this T.
- (c) Three of the four substances in the equilibrium are solids, hence do not appear in the K expression. The K expression would have the composition: $K = P^2(CO)$. According to LeChatelier's principle, reducing the concentration (and the pressure) of CO would tend to shift the equilibrium to the right, favoring product formation.

SUMMARY AND CONCEPTUAL QUESTIONS

65. An examination of the equation $Hg(\ell) \rightarrow Hg(g)$ shows that the equilibrium constant

expression would be $Kp = P_{Hg(g)}$. So to find the temperature at which Kp = 1.00 bar and 1/760 bar, we need only to find the temperature at which the vapor pressure of mercury is 1.00 bar and 1/760 bar, respectively.

We can calculate the T for Kp = 1.00 bar easily. At the equilibrium point, we can calculate T at which Kp = 1.00bar if we know ΔG° . Since at equilibrium, $\Delta G^{\circ} = 0$, we can rewrite the equation: $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta_{r}S^{\circ}$ to read: $\Delta H^{\circ}/\Delta_{r}S = T$

$$\Delta_{\rm r} {\rm H}^{\circ} = (1 \text{ mol})(61.38 \frac{\rm kJ}{\rm mol}) - (1 \text{ mol})(0) = 61.38 \text{ kJ and for entropy:}$$

$$\Delta_{\rm r} {\rm S}^{\circ} = (1 \text{ mol})(174.97 \frac{\rm J}{\rm K \bullet mol}) - (1 \text{ mol})(76.02 \frac{\rm J}{\rm K \bullet mol}) = 98.95 \frac{\rm J}{\rm K}$$

Substituting into the equation:

$$\Delta_{\mathbf{r}} \mathbf{H}^{\circ} / \Delta_{\mathbf{r}} \mathbf{S} = \mathbf{T} = (61.38 \text{ kJ} \cdot 1000 \text{ J/kJ}) / 98.95 \frac{\text{J}}{\text{K}} = 620.3 \text{ K. or } 347.2 \text{ °C.}$$

(b) Temperature at which Kp = 1/760 Using the Clausius-Clapeyron equation:

$$\ln\left(\frac{P_2}{P_1}\right) = \frac{\Delta H}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right) \text{ and } \ln\left(\frac{1}{760}\right) = \frac{61.38 \times 10^3 \frac{J}{\text{mol}}}{8.3145 \frac{J}{K \bullet \text{mol}}} \left(\frac{1}{620.3 \text{K}} - \frac{1}{T_2}\right)$$

$$\frac{8.3145 \frac{J}{K \bullet mol} \bullet -6.633}{61.38 \times 10^3 \frac{J}{mol}} = \left(\frac{1}{620.3 \text{ K}} - \frac{1}{\text{T}_2}\right) \text{ so } -8.98 \times 10^{-4} \frac{1}{\text{ K}} = \left(\frac{1}{620.3 \text{ K}} - \frac{1}{\text{T}_2}\right)$$
$$- 1/\text{T}_2 = -8.98 \times 10^{-4} \text{ 1/K} - 1.61 \times 10^{-3} = -2.51 \times 10^{-3} \text{ and } \text{T}_2 = 398.3 \text{ K or } 125.2 \text{ °C}.$$
So in summary, Kp = 1 at 347.2 °C and is 1/760 at 125.2 °C.

- 67. Following statements false or true?
 - (a) The entropy of a liquid increases on going from the liquid to the vapor state at any temperature. **True**. For a given substance, the entropy of the vapor state of that substance is greater than for the liquid state.
 - (b) An exothermic reaction will always be spontaneous. False. While exothermic reactions are *almost always spontaneous*, the entropy does play a role, and, should the entropy increase greatly enough, cause the reaction to be non-spontaneous (i.e. reactant-favored).
 - (c) Reactions with a + $\Delta_r H$ and a + $\Delta_r S$ can never be product-favored. False. At very high temperatures, such reactions can be product-favored ($\Delta_r G < 0$).
 - (d) If $\Delta_r G$ is < 0, the reaction will have an equilibrium constant greater than 1. **True**. Since $\Delta_r G$ and K are related by the expression $\Delta_r G = -RT \ln K$, if $\Delta G < 0$, then mathematically K will be greater than 1.
- 69. If we dissolve a solid (e.g. table salt), the process proceeds spontaneously ($\Delta_r G^\circ < 0$). If $\Delta_r H^\circ = 0$, we can write: $\Delta_r G^\circ = \Delta_r H^\circ - T\Delta_r S^\circ$ and (-) = 0 - (+) $\Delta_r S^\circ$. The only mathematical condition for which this equation is true is if $\Delta_r S^\circ = +$, hence the process is entropy driven.
- 71. For the reaction: $2 C_2 H_6(g) + 7 O_2(g) \rightarrow 4 CO_2(g) + 6 H_2 O(g)$
 - (a) Predict whether signs of $\Delta_r S^{\circ}(system)$, $\Delta_r S^{\circ}(surroundings)$, $\Delta_r S^{\circ}(universe)$ are greater than, equal to, or less than 0. $\Delta_r S^{\circ}(system)$ will be > 0, since 9 mol of gas form 10 mol of gas as the reaction proceeds. $\Delta_r S^{\circ}(surroundings)$ will be > 0, since the reaction liberates heat, and would increase the entropy of the surroundings. With both $\Delta_r S^{\circ}(system)$ and $\Delta_r S^{\circ}(surroundings)$ increasing, $\Delta_r S^{\circ}(universe)$ would also increase.
 - (b) Predict signs of $\Delta_r H^\circ$, and $\Delta_r G^\circ$: Since the reaction is exothermic, $\Delta_r H^\circ$ would be "-". With a negative $\Delta_r H^\circ$ and an increasing entropy, $\Delta_r G^\circ$ would be "-" as well.

(c) Will value of Kp be very large, very small, or nearly 1? With the relatively large number of moles of carbon dioxide and water being formed, $\Delta_r H^\circ$ will be *large and negative*, and with the increasing entropy $\Delta_r G^\circ$ will also be relatively *large and negative*. Since $\Delta_r G = -RT$ lnK, we anticipate Kp being **very large**.

Will Kp be larger or smaller at temperatures greater than 298 K? Rearrange the expression $\frac{\Delta G}{RT} = -\ln K.$ As T increases, the term on the left will decrease, resulting in a larger value of
K (-lnK decreases-> so K increases).

73. Calculate the $\Delta_{r}S$ for (1) C(s) + 2 H₂ (g) \rightarrow CH₄ (g) $\Delta_{r}S_{1}^{\circ} = (1 \text{ mol})(+186.26 \frac{J}{K \cdot \text{mol}}) - [(1 \text{ mol})(+5.6 \frac{J}{K \cdot \text{mol}}) + (2 \text{ mol})(+130.7 \frac{J}{K \cdot \text{mol}})] = -80.7 \frac{J}{K \cdot \text{mol}-rxn}$ Calculate the $\Delta_{r}S$ for (2) CH₄(g) + $\frac{1}{2}$ O₂ (g) \rightarrow CH₃OH(ℓ) $\Delta_{r}S_{2}^{\circ} = (1 \text{ mol})(+127.19 \frac{J}{K \cdot \text{mol}}) - [(1 \text{ mol})(+186.26 \frac{J}{K \cdot \text{mol}}) + (\frac{1}{2} \text{ mol})(+205.07 \frac{J}{K \cdot \text{mol}})] = - 161.60 \frac{J}{K \cdot \text{mol}-rxn}$ Calculate the $\Delta_{r}S$ for (3) C(s) + 2 H₂ (g) + $\frac{1}{2}$ O₂ (g) \rightarrow CH₃OH(ℓ) $\Delta_{r}S_{3}^{\circ} = (1 \text{ mol})(+127.19 \frac{J}{K \cdot \text{mol}}) - [(1 \text{ mol})(+127.19 \frac{J}{K \cdot \text{mol}}) - [(1 \text{ mol})(+127.19 \frac{J}{K \cdot \text{mol}})] - [(1 \text{ mol})(+127.19 \frac{J}{K \cdot \text{mol}}) + (\frac{1}{2} \text{ O}_{2} (g) \rightarrow \text{CH}_{3}\text{OH}(\ell)$ $\Delta_{r}S_{3}^{\circ} = (1 \text{ mol})(+127.19 \frac{J}{K \cdot \text{mol}}) - [(1 \text{ mol})(+127.19 \frac{J}{K \cdot \text{mol}}) + (2 \text{ mol})(+130.7 \frac{J}{K \cdot \text{mol}}) + (\frac{1}{2} \text{ mol})(+205.07 \frac{J}{K \cdot \text{mol}})]$ $= -242.3 \frac{J}{K \cdot \text{mol}-rxn}$ So $\Delta_{r}S_{1}^{\circ} + \Delta_{r}S_{2}^{\circ} = (-80.7 \frac{J}{K}) + (-161.60 \frac{J}{K}) = -242.3 \frac{J}{K \cdot \text{mol}-rxn}$

75. (a) Confirm that Mg(s) + 2 H₂O(ℓ) → Mg(OH)₂ (s) + H₂(g) is a spontaneous reaction. Δ_fH° (kJ/mol) 0 -285.83 -924.54 0 S° (J/K • mol) 32.67 69.95 63.18 130.7 Δ_rH° = [(1 mol)(-924.54 $\frac{kJ}{mol}$) + (1mol)(0)] - [(1mol)0 + (2 mol)(-285.83 $\frac{kJ}{mol}$)] = -352.88 $\frac{kJ}{mol-rxn}$

$$\Delta_{\mathbf{r}} \mathbf{S}^{\circ} = \left[(1 \text{ mol})(63.18 \frac{J}{K \bullet \text{mol}}) + (1 \text{ mol})(130.7 \frac{J}{K \bullet \text{mol}}) \right] - \left[(1 \text{ mol})(32.67 \frac{J}{K \bullet \text{mol}}) + (2 \text{ mol})(69.95 \frac{J}{K \bullet \text{mol}}) \right]$$

= $21.31 \frac{J}{K \bullet \text{ mol-rxn}}$

 $\Delta_{\mathbf{r}} \mathbf{G}^{\circ} = \Delta_{\mathbf{f}} \mathbf{H}^{\circ} - \mathbf{T} \Delta_{\mathbf{r}} \mathbf{S}^{\circ}$

- $= -352.88 \text{ kJ} (298.15 \text{ K})(21.31 \frac{\text{J}}{\text{K}})(\frac{1.000 \text{ kJ}}{1000 \text{ J}}) = -359.23 \frac{\text{kJ}}{\text{mol-rxn}}$
- With a negative Δ_rG°, we anticipate the reaction to be spontaneous.
 (b) Mass of Mg to produce sufficient energy to heat 225 mL of water (D = 0.996 g/mL) from 25°C to the boiling point (100 °C)? [100-25 = 75 °C or 75K] Heat required: 225 mL • 0.996 g/mL • 4.184 J/g•K • 75 K. = 70,322.58 J or 70.3 kJ The Δ_rH° =-352.88 kJ for 1 mol of Mg.

$$\frac{70.3\text{kJ}}{1} \bullet \frac{1 \text{ mol Mg}}{352.88 \text{ kJ}} = 0.2 \text{ mol Mg or } 24.3 \text{ g/mol} \bullet 0.2 \text{ mol} = 4.84 \text{ g Mg}$$

77. (a) Equation for the reaction of hydrazine and oxygen. $N_2H_4(l) + O_2(g) \rightarrow 2 H_2O(l) + N_2(g)$

Oxygen is the **oxidizing agent**, and hydrazine is the **reducing agent**. There are several ways to assess this. Note that the oxidation state for O_2 is 0 (as reactant) and -2 (as product)—it has been reduced (by hydrazine). Note that hydrazine **loses H**—in going from reactant to product—a definition for being oxidized.

(b) Calculate $\Delta_r H^{\circ}, \Delta_r S^{\circ}$, and $\Delta_r G^{\circ}$:

$$\begin{split} \Delta_{r} H^{\circ} &= [2 \bullet \Delta_{f} H^{\circ} \text{ H}_{2} \text{O} (l) + 1 \bullet \Delta_{f} H^{\circ} \text{ N}_{2} (g)] - [1 \bullet \Delta_{f} H^{\circ} \text{ N}_{2} \text{H}_{4} (l) + 1 \bullet \Delta_{f} H^{\circ} \text{ O}_{2} (g)] \\ &= [(2 \text{ mol})(-285.830 \frac{\text{kJ}}{\text{mol}}) + 0] - [(1 \text{ mol})(50.63 \frac{\text{kJ}}{\text{mol}}) + 0] = -622.29 \frac{\text{kJ}}{\text{mol-rxn}} \\ \Delta_{r} S^{\circ} &= [2 \bullet S^{\circ} \text{H}_{2} \text{O} (l) + 1 \bullet S^{\circ} \text{ N}_{2} (g)] - [1 \bullet S^{\circ} \text{ N}_{2} \text{H}_{4} (l) + 1 \bullet S^{\circ} \text{ O}_{2} (g)] \\ &= [(2 \text{ mol})(69.95 \frac{\text{J}}{\text{K} \bullet \text{mol}}) + (1 \text{ mol})(191.56 \frac{\text{J}}{\text{K} \bullet \text{mol}})] - \\ &= [(1 \text{ mol})(121.52 \frac{\text{J}}{\text{K} \bullet \text{mol}}) + (1 \text{ mol})(205.07 \frac{\text{J}}{\text{K} \bullet \text{mol}})] = 4.87 \frac{\text{J}}{\text{K} \bullet \text{ mol-rxn}} \\ \Delta_{r} G^{\circ} &= \Delta_{r} H^{\circ} - T \Delta_{r} S^{\circ} \\ &= -622.29 \text{ kJ} - (298 \text{ K})(4.87 \frac{\text{J}}{\text{K}})(\frac{1.000 \text{ kJ}}{1000.\text{ J}}) = -623.74 \frac{\text{kJ}}{\text{mol-rxn}} \end{split}$$

(c) T change of 5.5×10^4 L of water (assuming 1 mole of N₂H₄ reacts:

1 mol of hydrazine releases -622.29 kJ, Heat = m • c • Δt [Assume D of water = 0.996 g/mL] 622.29 x 10³ J = 5.5 x 10⁴ L • 996 g/L• 4.184 J/g • K • Δt . <u>6.2229 x10⁵ J</u> $(5.5 x 10^{4} L • 996 \frac{g}{L} • 4.184 \frac{J}{g • K})$ = Δt . Solving for Δt gives: 2.7 x 10⁻³ K.

- (d) Solubility of $O_2 = 0.000434$ g $O_2/100$ g water.
 - $5.5 \ge 10^4 \text{ L} \cdot 996 \text{ g/L} \cdot 4.34 \ge 10^{-4} \text{ g O}_2/100 \text{ g water} \cdot 1 \mod O_2/32.00 \text{ g O}_2$

7.5 mol O₂ (or approximately 240 g)

(e) If hydrazine is present in 5% solution, what mass of hydrazine solution is needed to consume the O₂ present?

$$\frac{7.4 \text{ mol } \text{O}_2}{1} \bullet \frac{1 \text{ mol } \text{N}_2\text{H}_4}{1 \text{ mol } \text{O}_2} \bullet \frac{32.05 \text{ g } \text{N}_2\text{H}_4}{1 \text{ mol } \text{N}_2\text{H}_4} \bullet \frac{100 \text{ g solution}}{5.00 \text{ g } \text{N}_2\text{H}_4} = 4.8 \text{ x } 10^3 \text{ g solution}$$
(2 sf)

- (f) Assuming N₂ escapes as gas, calculate V of N₂ at STP,
 The balanced equation tells us that 7.4 mol of O₂ will liberate 7.4 mol of N₂.
 At STP, 7.4 mol of this gas will occupy (7.4 mol 22.4 L/mol) or 170 L (2 sf)
- 79. The key phrase needed to answer the question: "What is the sign....." is "Iodine dissolves readily...." . This phrase tell us that $\Delta_r G^\circ$ is negative.

Enthalpy-driven processes are exothermic. The "neutrality" of the ΔH for this reaction tells us that the process is NOT enthalpy-driven. Since the iodine goes from the solid state to the "solution" state, we anticipate an increase in entropy, and would therefore state that the process is entropy-driven.

- 81. (a) According to Screen 19.6 of ChemistryNow, the spontaneity decreases as T increases.(b) There is no T between 400K and 1000K at which the reaction is spontaneous.
- 83. (a)Calculate $\Delta_r G^\circ$ at 298K, 800 K, and 1300 K for the reaction:N₂(g) + 3 H₂(g) \Leftrightarrow 2 NH₃(g) At 298K: $\Delta_r H^\circ = (2 \text{ mol} \bullet -45.90 \text{ kJ/mol}) - (0 + 0) = -91.80 \text{ kJ}$ and $\Delta_r S^\circ = (2 \text{ mol} \bullet 192.77 \text{ J/K} \bullet \text{mol}) - (1 \text{ mol} \bullet 191.56 \text{ J/K} \bullet \text{mol} + 3 \text{ mol} \bullet 130.7 \text{ J/K} \bullet \text{mol})$ = -198.12 J/K and

$$\begin{split} &\Delta_r G \stackrel{\circ}{=} \Delta_f H^\circ - T \Delta_r S^\circ = -91.80 \text{ kJ} - (298 \text{ K})(-0.19812 \text{ kJ/K}) = -32.74 \frac{\text{kJ}}{\text{mol-rxn}} \\ &\textbf{At 800K:} \\ &\Delta_r G \stackrel{\circ}{=} \Delta_f H^\circ - T \Delta_r S^\circ = -107.4 \text{ kJ} - (800 \text{K})(-0.2254 \text{ kJ//K}) = 72.92 \frac{\text{kJ}}{\text{mol-rxn}} \\ &\textbf{At 1300 K:} \\ &\Delta_r G \stackrel{\circ}{=} \Delta_f H^\circ - T \Delta_r S^\circ = -112.4 \text{ kJ} - (1300 \text{K})(-0.2280 \text{ kJ/K}) = 184.0 \frac{\text{kJ}}{\text{mol-rxn}} \\ &A \text{ quick examination of the values of } \Delta_r G \stackrel{\circ}{=} \text{ indicates that the free energy change becomes} \end{split}$$

more positive as T increases.

(b) Calculate K for the reaction at 298K, 800K, 1300K:

At 298K:

$$\frac{-32.74 \text{ x } 10^{3} \text{J}}{-(8.3145 \text{ } \frac{\text{J}}{\text{K} \cdot \text{mol}})(298 \text{ K})} = \ln K = 13.21 \text{ and } \text{K} = 5.48 \text{ x } 10^{5}$$

At 800K:

$$\frac{72.92 \text{ x } 10^{3} \text{J}}{-(8.3145 \text{ } \frac{\text{J}}{\text{K} \cdot \text{mol}})(800 \text{ K})} = \ln K = -10.96 \text{ and } \text{K} = 1.73 \text{ x } 10^{-5}$$

At 1300 K:

$$\frac{184 \text{ x } 10^{3} \text{J}}{-(8.3145 \text{ } \frac{\text{J}}{\text{K} \cdot \text{mol}})(1300 \text{ K})} = \ln K = -17.02 \text{ and } \text{K} = 4.05 \text{ x } 10^{-8}$$

(c) For which T will mole fraction of NH₃ be largest

The "bottom line" is easy to assess. The partial pressure of ammonia will be greatest for the temperature for which K is greatest (298 in this case).