Chapter 6 CHEMICAL PERIODICITY

Effective nuclear charge -

Shielding -

GENERALIZATIONS about atomic behavior & properties

(1) Atomic radii (size)

Across a period, from left to right

Down a group,

from top to bottom

<u>(2) Io</u>	nizatio	on En	<u>ergy</u> (IE) ·	- the minimum amount of energy required to remove outermost electron(s) from an atom
А	\rightarrow A	^ +	+ e-	1st ionization energy
A^+	\rightarrow A	2+	+ e-	2nd ionization energy
Across a period,				from left to right
Down a group,				from top to bottom

(3) Electron Affinity (EA) - energy absorbed when an atom gains an electron

$A + e \rightarrow A^{-}$	Energy released - exothermic, negative number. <u>Most negative</u> refers to element most likely to gain an e
Across a period,	from left to right
Down a group,	from top to bottom

(4) Ionic Radii (size)

for atoms of SAME CHARGE, trend is exactly the same as atomic radii

cations are SMALLER that	Na ⁺	Na	
anions are LARGER than	F	F⁻	
		Cs^+	F⁻
increasing + charge:	Cr^+	Cr ²⁺	Cr ³⁺

*(5) Electronegativity * (EN) - the relative tendency of an atom to attract electrons to itself when chemically combined with another atom ("pull")

ex.	NaCl,	Na ⁺ & CI ions metal/nonmetal	electron is <i>transferred</i> from Na to Cl
ex.	SO ₃	covalent bonds nonmetal/nonmetal electron pair sharing	electron is shared <i>unequally</i> between S and O
Acros	s a period,	from left to	o right

Down a group,	from top to bottom
0 17	1

How to memorize:

Dr. Heising's method for Lewis Dot Structures

Note: These rules will not work if

- a) **hydrogen** is present in the molecule, as H does not obey the octet rule
- b) the molecule has more than one central atom

If the molecule falls into one or both of these categories, flip over for some alternate ways to get the Lewis structure.

- 1. <u>Add up the valence electrons</u>. Remember the charge (subtract for +, add for -).
- 2. <u>Divide by eight</u>. The *integer* is the number of sigma (σ) bonds around the central atom. The *remainder* (if any) is the number of electrons around the central atom.
- 3. <u>Arrange the atoms with the least electronegative atom at the center</u>. Symmetric is often (but not always) correct.
- 4. <u>Draw the sigma (σ) bonds</u>. Should be equal to the *integer* in step 2, and every atom should have one bond to the central atom by the time you are finished.
- 5. <u>Put the *remainder* electrons as lone pairs on the central atom</u>. If there are an odd number of electrons (infrequent but not impossible), just put the odd one by itself.
- 6. Does the central atom have 8 electrons around it? Include electrons in bonds and electrons in lone pairs in the count. If it has less than 8, make additional bonds, called pi (π) bonds, with the surrounding atoms to complete the octet. More than 8 electrons is OK for atoms in row 3 or higher of Periodic Table.
- 7. Fill the octets of the surrounding atoms using electron pairs.
- 8. <u>Check yourself</u>. Count the total # of electrons in bonds and lone pairs in the entire molecule. It should match the value you found in step 1.
- 9. <u>Calculate the formal charge on the central atom</u>. Choose the resonance structure with the least formal charges as your best answer. If central atom is in row 3 or higher, you may expand the octet with additional π bonds to minimize the formal charge.

The method must be modified if

a) Hydrogen is present.

- To which atom is the hydrogen connected? Often H is bonded to the atom next to it in the chemical formula. Ex.
 - o CHCl₃ has one H bonded to C, the central atom
 - \circ HCO₂H has one H bonded to C (central atom) and one H bonded to O.
 - \circ In ternary oxoacids, (H₂SO₄, H₃PO₄, HNO₃, etc.) H is bonded to O.
- Substitute a minus charge in the formula for every H present. For example, CHCl₃ \rightarrow CCl₃⁻, H₃CCN \rightarrow CCN³⁻, HCO₂H \rightarrow CO₂²⁻
- Follow the rules. After step 8, substitute a sigma bond to an H atom for one lone pair (each) on the appropriate atom. Avoid putting H on O atoms that form π bonds.

b) the structure has more than one 'central' atom.

- If the extra atom not bonded to the central atom is just hydrogen (Ex., H_2SO_4 , H_3PO_4 , etc.), follow the directions in method a).
- Diatomic molecules (ex. N_2 , O_2 , C_2). Follow the book, or treat BOTH as central atoms. Complete octet with π bonds.
- Otherwise (organic molecules, $P_2O_7^{4-}$), follow the method in the book, or do the following:
 - Do steps 1, 3, and 4. As there is more than one central atom, arrange the atoms in the most symmetric manner possible.
 - Subtract bonding electrons (step 4) from valence electrons (step 1). Distribute remainder over the peripheral atoms until the octet rule is fulfilled for all atoms (except H, of course).
 - Some left over put as lone pairs on central atoms
 - Not enough go back and turn some of the lone pairs into π bonds.
 - o Do steps 8 and 9.

Determine Lewis structures for the following examples: PCI3, CO2, CH2CI2, N2 PCI3 i) $P: s^2p^3 = 5$ ci: $s^*p^5 = 3(7)$ $75a^-$ 2) 26/8= 3 w/ 2et left 30 bonds & 1 lone pair 3) CI P CI CI (4,5) $(1-\ddot{p}-C)$ C02 i) C: 4 O: $\frac{2(6)}{16e^{-}/8} = 2 \sigma$ bonds 3),4),5) 0-C-0 $6) \qquad O=C=O \qquad 2\pi \ bonds$ 7,8) 0=c=0 16e

3,4,5)
$$(1 - \ddot{C} - C)$$

6,7),8) $:\ddot{C}_{1} - \ddot{C}_{2} - \dot{C}_{1}:$ 20e⁻
***** put H backin.
: $\ddot{C}_{1} - \ddot{C}_{2} - \ddot{C}_{1}:$
H

ł