CHEMISTRY 101 EXAM 3

SECTIONS 572-580

Dr. Joy Heising

FORM 3N

November 20, 2001

Directions:

- 1. This examination consists of two parts: 17 multiple choice questions (6 points each) in Part 1 and 4 free response questions (48 points total) in Part 2. The total point value for the exam is 150 points.
- 2. Fill out your scantron sheet to be used for Part 1.
 - a. Do not forget to include your **SIGNATURE** and **ID** number.
 - b. Dept = CHEM, Course No. = 101
 - c. If you want your scores posted, mark A under the option column
- 3. Fill in your **NAME**, **SIGNATURE** and **ID** number at the beginning of Part 2 (stapled separately).
- 4. Use a #1 or #2 pencil for marking the scantron. Fill in the appropriate circles completely. You may write on the multiple choice questions.
- 5. Read each question **carefully**, then choose the **best answer** for each question. There is no penalty for guessing.
- 6. Write your answers in Part 2 clearly and neatly. Show your work for partial credit.
- 7. DO NOT write on the envelope.
- 8. The last page of each Part is a sheet of scrap paper. You may tear it off.
- 9. When finished, put the **SCANTRON SHEET AND PART 2** back in the envelope and turn it in. You may keep Part 1 (this stapled portion).

Some Helpful Equations/Constants:

$$PV = nRT \hspace{1cm} R = 0.0821 \hspace{0.1cm} \underline{atm \cdot L} \hspace{1cm} R = 62.4 \hspace{0.1cm} \underline{torr \cdot L} \\ mol \cdot K \hspace{1cm} mol \cdot K$$

$$\begin{array}{ccc} \underline{P_1}\underline{V_1} &=& \underline{P_2}\underline{V_2} \\ T_1 & & T_2 \end{array}$$

$$P_{tot} = P_a + P_b + \dots$$

$$n_{tot} = n_a + n_b + \dots$$

PART 1

Multiple Choice (6 points each). Choose the BEST answer.

1. Which of the following is the strongest acid?
a) HClO ₄ b) HClO ₃ c) HBrO ₂ d) ClO ⁻ e) HF
2. According to the Lewis theory, an acid is best described as
 a) an electron pair donor b) a proton donor c) an electron pair acceptor d) a proton acceptor e) any compound that contains H
3. One mole of H ₂ CO ₃ has equivalents of the acid.
a) 1/3 b) 1/2 c) 1 d) 2 e) 3
4. Which one of the following pairs of acids and conjugate bases is incorrect ?
Acid Conjugate Base
a) $HClO_2$ ClO_2^- b) CO_3^{2-} HCO_3^- c) NH_4^+ NH_3 d) H_2S HS^- e) $HS^ S^{2-}$
5. Which one of the following could not be a Brönsted-Lowry acid?
a) H ₂ O b) HN ₃ c) H ₃ O ⁺ d) NH ₄ ⁺ e) BF ₃

6. Which of the following is not an amphoteric acid salt?
a) NaH ₂ PO ₄ b) Na ₂ HPO ₄ c) Na ₃ PO ₄ d) KHCO ₃ e) KHSO ₄
7. Acid rain is formed when assorted gaseous nonmetal oxides (the combustion products of nonmetal impurities in gasoline) react with atmospheric water. Which nonmetal oxide, when reacted with H ₂ O, forms H ₂ SO ₃ ?
a) SO b) SO ₂ c) SO ₃ d) HSO ₄ ⁻ e) H ₂ S
8. What is the oxidation number of Ce in Ce(SO ₄) ₂ ? a) +1 b) +2 c) +6 d) +4 e) +8
 9. In an oxidation/reduction reaction, the reducing agent a) loses electrons b) gains electrons c) adds H₂O, OH⁻ or H⁺ to balance the charge and/or atoms d) is a government spy e) all of the above
10. When balanced, what is the total number of electrons transferred?
$Pd^{2+}_{(aq)}+$ $Al_{(s)} \rightarrow Pd_{(s)} + Al^{3+}_{(aq)}$ (UNBALANCED) a) 0 b) 2 c) 3 d) 5 e) 6

- 11. By international agreement the standard temperature and pressure (STP) for gases is
- a) 25°C and one atmosphere.
- b) 273.15 K and 760 torr.
- c) 298.15 K and 760 torr.
- d) 0°C and 700 torr.
- e) 293 K and one atmosphere.
- 12. The molecules of all samples of ideal gases have the same average kinetic energies at the same
- a) volume
- b) pressure
- c) quantity of moles
- d) density
- e) temperature
- 13. The van der Waals constant, **b**, in the relationship

+
$$n^2a$$
 +
| P + $-\frac{m^2a}{V^2}$ | $(V - nb) = nRT$ is a factor that corrects for +

- a) deviations in the gas constant, R.
- b) the attractive forces between gas molecules.
- c) the tendency of the gas molecules to ionize.
- d) the average velocities of the gas molecules.
- e) the volume occupied by the gas molecules.
- 14. How many moles of an ideal gas are contained in 8.21 L at 73°C and 380 torr?
- a) 0.250
- b) 1.5×10^{23}
- c) 0.144
- d) 7.5×10^{23}
- e) 4.2 x 10⁻²⁵
- 15. What volume of O₂ would be required to react with excess SO₂ at 273 K and 1.00 atm to produce 0.500 mole of SO₃?

$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

- a) 44.8 L
- b) 22.4 L
- c) 33.6 L
- d) 5.60 L
- e) 11.2 L

- 16. A mixture of gases containing 0.75 mol of N_2 , 1.50 mol of $C_{\frac{1}{2}}$ and 3.00 mol of He at 14°C is in a 50.0-L container. What is the total pressure in the vessel?
- a) 1.8 atm
- b) 2.2 atm
- c) 2.5 atm
- d) 2.7 atm
- e) 3.2 atm
- 17. When CaC_2 is reacted with water, a gaseous product is formed. A small sample of this gas weighing 0.287 g is collected in a 500 ml flask at a pressure of 400 torr. The temperature is 18.0°C. What is the molar mass of the gas?
- a) 16.0 g/mol
- b) 36.6 g/mol
- c) 26.0 g/mol
- d) 11.0 g/mol
- e) 8.37 g/mol

SCRAP PAPER (PART 1)

PART 2 FORM 3N

	I	Dr. Heising	CHEM 101	Sections 572-580	EXAM 3	November 20, 2	001		
	NA	ME:							
	SID #:								
	SIGNATURE:								
	Free	Response (48	3 pts total, see n	nargin for point value	s). Show all w	ork for partial credit!			
(6 pts)	18.			cupies a volume of 5 a pressure of 4.0 atm		pressure of 2.0 atm. W	hat		
	19.	Oxalic acid, I	$H_2C_2O_4$, is a dip	protic acid, molar ma	ss = 90.0 g/mo	l.			
(6 pts)	a)		ve 1.00 g of oxy of the solution		ater to make 10	00 ml of solution, what i	is		
			y of the solution	•					
(6 pts)	b)			5N solution of oxalic acid?	e acid. How	many milliliters of 1.0	N NaO		

	20.	One of the products formed upon the reaction of oxalic acid, $H_2C_2O_4$, a weak acid, with NaOH in aqueous solution is the soluble salt $Na_2C_2O_4$.
(6 pts)	a)	write a balanced formula equation to describe the reaction complete with phase labels (s , l , aq , etc.).
(2 pts)	b)	Label the acid/conjugate base and the base/conjugate acid pairs on the equation.
(4 pts)	c)	write the total ionic equation for the reaction.
(2 pts)	d)	write the net ionic equation.
(2 pts)	e)	which of the three acid/base theories best describes this reaction?

21.	Consider the following	unbalanced redox	reaction in	basic solution:
-----	------------------------	------------------	-------------	-----------------

 $Al_{(s)}$ + $NO_3^-_{(aq)}$ \rightarrow $Al(OH)_4^-_{(aq)}$ + $NH_{3(g)}$

(6 pts) a) The _____ atom is oxidized from _____ to ____. (oxidation numbers)

The _____ atom is reduced from _____ to ____.

(oxidation numbers)

(8 pts) b) balance the reaction using the method of your choice. **SHOW YOUR WORK**.

SCRAP PAPER (PART 2)