CHAPTER 6

Chemical Periodicity

Chapter Goals

- 1. More About the Periodic Table Periodic Properties of the Elements
- 2. Atomic Radii
- 3. Ionization Energy
- 4. Electron Affinity
- 5. Ionic Radii
- 6. Electronegativity

- Establish a classification scheme of the elements based on their electron configurations.
- **#** Noble Gases
 - All of them have completely filled electron shells.
- Since they have similar electronic structures (<u>full s</u> and p orbitals), their chemical reactions are similar.
 - He $1s^2$
 - Ne [He] $2s^2 2p^6$
 - Ar [Ne] $3s^2 3p^6$
 - Kr [Ar] $4s^2 4p^6$
 - Xe [Kr] $5s^2 5p^6$
 - $\blacksquare Rn \qquad [Xe] 6s^2 6p^6$

 Representative Elements
 Are the elements in A groups on periodic chart.

These elements will have
their "last" electron in an
outer s or p orbital.

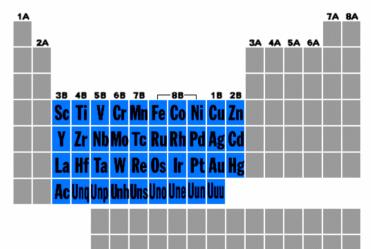
 1A
 7A
 8A

 H
 2A
 5A
 6A
 H
 He

 Li
 Be
 B
 C
 N
 O
 F
 Ne

 Na
 Mg
 3B
 4B
 5B
 6B
 7B
 BB
 C
 N
 O
 F
 Ne

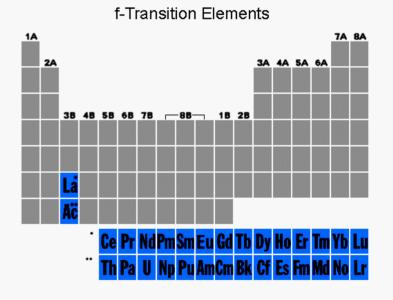
 Na
 Mg
 3B
 4B
 5B
 6B
 7B
 BB
 1B
 2B
 Al
 Si
 P
 S
 Cl
 Ar


 K
 Ca
 Ca
 F
 B
 Ca
 F
 Se
 Br
 Kr

 Rb
 Sr
 I
 Sa
 Sa

Representative Elements

*d*-Transition Elements


- Elements on periodic chart in B groups.
- Each metal has *d* electrons.
 ns (n-1)*d* configurations
- These elements make the transition from metals to nonmetals.

d-Transition Elements

$\mp f$ - transition metals

- Sometimes called inner transition metals.
- Electrons are being added to *f* orbitals.
- Consequently, very slight variations of properties from one element to another.
- Outermost electrons have the greatest influence on the chemical properties of elements.

Periodic Properties of the Elements – Atomic Radii

- Atomic radii describes the relative sizes of atoms.
- Atomic radii increase
 within a column going
 from the top to the bottom
 of the periodic table.
- Atomic radii decrease
 within a row going from
 left to right on the periodic table.

	2015			111			
IA	IIA	IIIA	IVA	VA	VIA	VIIA	VIIIA
		Atomic r	adii				
H 0.37							He 0.31
Li	Be	B	©	N	0	(E)	Ne
1.52	1.12	0.85	0.77	0.75	0.73	0.72	0.71
Na	Mg	A1	Si	P	S	C1	Ar
1.86	1.60	1.43	1.18	1.10	1.03	1.00	0.98
К 2.27	Ca	Ga	Ge	As	Se	Br	Kr
	1.97	1.35	1.22	1.20	1.19	1.14	1.12
Rb	Sr	In	Sn	Sb	Te	I	Xe
2.48	2.15	1.67	1.40	1.40	1.42	1.33	1.31
Cs	Ba	T1	Pb	Bi	Po	At	Rn
	2.22	1.70	1.46	1.50	1.68	1.40	1.41
2.65 © 2004 Thomson						COLORIDA DE LA	

7

Atomic Radii

- The reason the atomic radii decrease across a period is due to shielding or screening effect.
 - Effective nuclear charge, Z_{eff}, experienced by an electron is less than the actual nuclear charge, Z.
 - The inner electrons block the nuclear charge's effect on the outer electrons.
- Moving across a period, each element has an increased nuclear charge and the electrons are going into the same shell (2s and 2p or 3s and 3p, etc.).
 - Consequently, the outer electrons feel a stronger effective nuclear charge.
 - For Li, $Z_{eff} \sim +1$
 - For Be, $Z_{eff} \sim +2$

Atomic Radii

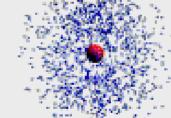
Example: Arrange these elements based on their atomic radii.
Se, S, O, Te

Example: Arrange these elements based on their atomic radii.
P, Cl, S, Si

Example: Arrange these elements based on their atomic radii.
Ga, F, S, As

Redox Reactions

- Why do metals losa electrons in their reactions?
- Why does Mg form Mg²⁺ ions and not Mg³⁺?
- Why do nonmetals take on electrons?


@ 2004 Thomson/Brooks Cole

First ionization energy (IE₁)

 The minimum amount of energy required to remove the most loosely bound electron from an isolated gaseous atom to form a 1+ ion.

Symbolically:

88

Mg 1s² 2s² 2p⁶ 3s²

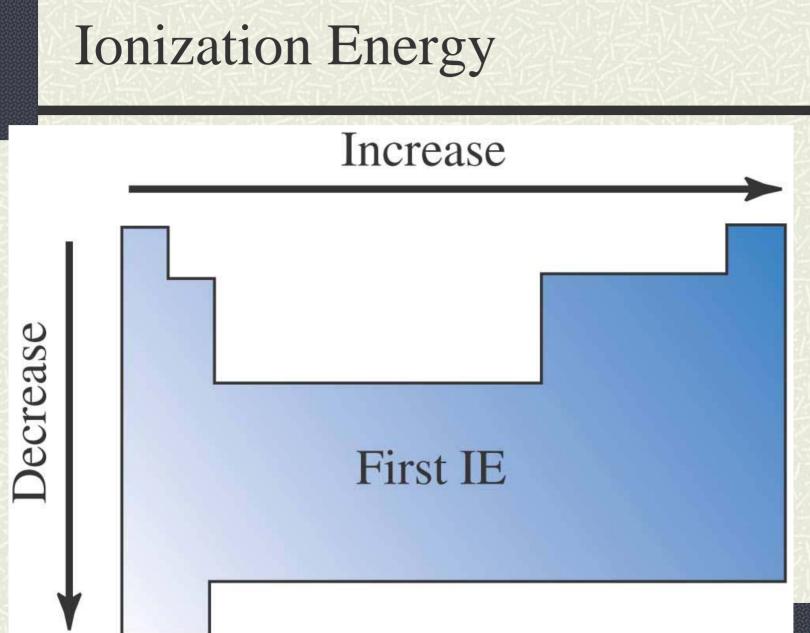
Atom_(g) + energy \rightarrow ion⁺_(g) + e⁻ Mg_(g) + 738kJ/mol \rightarrow Mg⁺ + e⁻

Second ionization energy (IE₂)

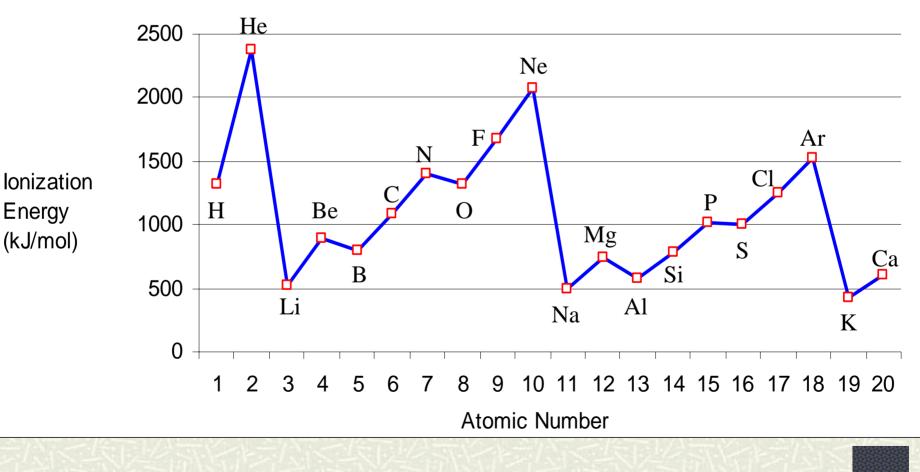
 The amount of energy required to remove the second electron from a gaseous 1+ ion.

Symbolically:

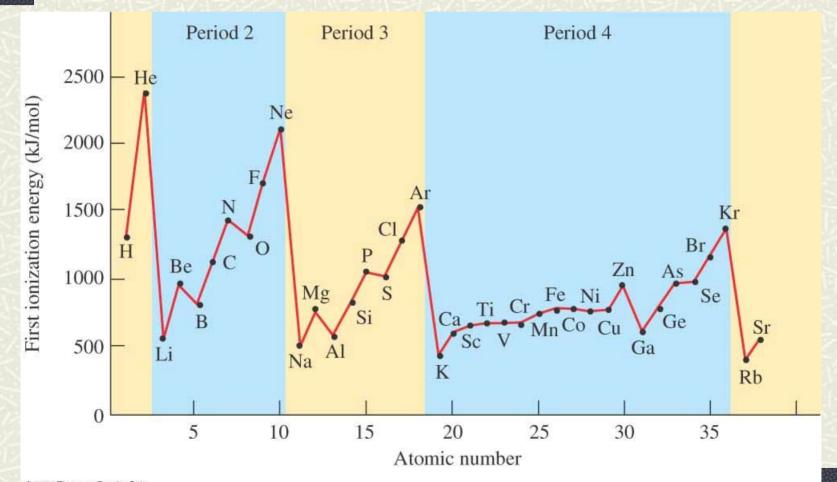
- ion⁺ + energy → ion²⁺ + e⁻ Mg^+ + 1451 kJ/mol → Mg^{2+} + e⁻ Mg^+ has 12 protons and only 11 electrons. Therefore, IE for Mg^+ > Mg
- Atoms can have 3rd (IE3), 4th (IE4), etc. ionization energies.


Mg⁺ 1s² 2s² 2p⁶ 3s¹

Periodic trends for Ionization Energy:


- **IE_2 > IE_1** It always takes more energy to remove a second electron from an ion than from a neutral atom.
- IE₁ generally increases moving from IA elements to VIIIA elements.

Important exceptions at Be & Mg, N & P, etc. due to filled and half-filled subshells.


IE₁ generally decreases moving down a family. IE₁ for Li > IE₁ for Na, etc.

First Ionization Energies of Some Elements

First Ionization Energies of Some Elements

- Example: Arrange these elements based on their first ionization energies (IE).
 Sr, Be, Ca, Mg
- **Example:** Arrange these elements based on their first IE.Al, Cl, Na, P
- Example: Arrange these elements based on their first IE.
 B, O, Be, N

First, second, third, etc. ionization energies exhibit periodicity as well.

- Look at the following table of ionization energies versus third row elements.
 - Notice that the energy increases enormously when an electron is removed from a completed electron shell.

Group and	IA	IIA	IIIA	IVA
element	Na	Mg	Al	Si
IE ₁ (kJ/mol)	496	738	578	786
IE ₂ (kJ/mol)	4562	1451	1817	1577
IE ₃ (kJ/mol)	6912	7733	2745	3232
IE ₄ (kJ/mol)	9540	10,550	11,580	4356

The reason Na forms Na⁺ and not Na²⁺ is that the energy difference between IE₁ and IE₂ is so large.
Requires more than 9 times more energy to remove the second electron than the first one.

The same trend is persistent throughout the series.
Thus Mg forms Mg²⁺ and not Mg³⁺.
Al forms Al³⁺.

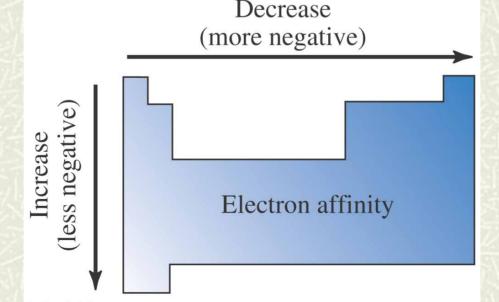
Electron affinity is the amount of energy *absorbed* when an electron is added to an isolated gaseous atom to form an ion with a 1- charge.

Electron affinity is a measure of an atom's ability to form negative ions.

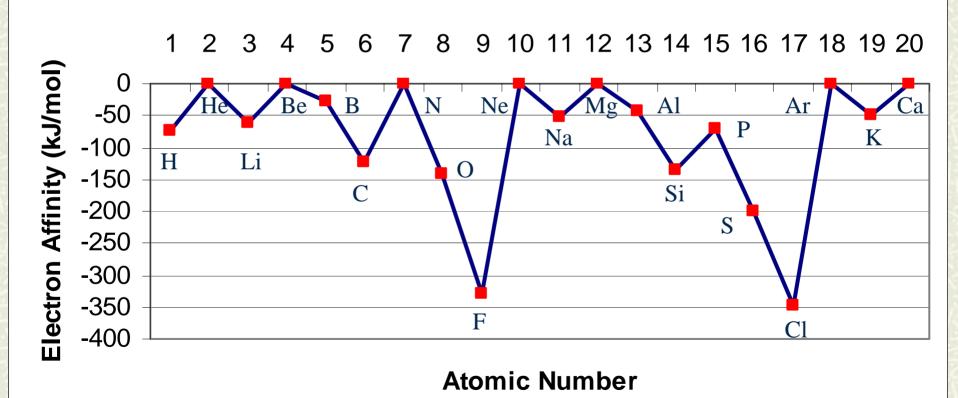
Symbolically:

 $atom(g) + e^- + EA \rightarrow ion^-(g)$

Sign conventions for electron affinity.
 If electron affinity > 0 energy is absorbed.
 If electron affinity < 0 energy is released.
 Two examples of electron affinity values:</pre>


 $Mg_{(g)} + e^{-} + 231 \text{ kJ/mol} \rightarrow Mg^{-}_{(g)}$ EA = +231 kJ/mol

 $Br_{(g)} + e^{-} \rightarrow Br_{(g)} + 323 \text{ kJ/mol}$ EA = -323 kJ/mol


General periodic trend for electron affinity is

© 2004 Thomson/Brooks Cole

- the values become more negative from left to right across a period on the periodic chart.
- the values become more negative from bottom to top up a row on the periodic chart.

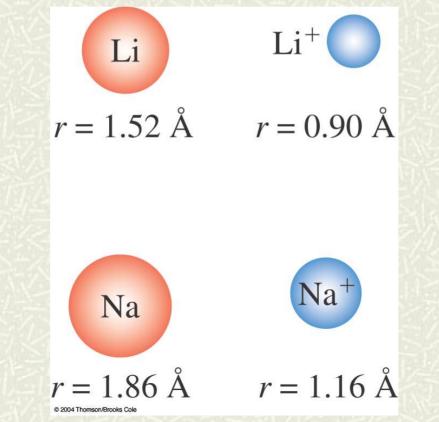
Electron Affinities of Some Elements

1	Н -73									He	0
2	Li -60	Be (~0)			В —29	C -122	N 0	O -141	F -328	Ne	0
3	Na -53	Mg (~0)	1. N		Al -43	Si -134	P -72	S -200	Cl -349	Ar	0
4	К -48	Ca (~0)		Cu -118	Ga -29	Ge -119	As -78	Se -195	Br -324	Kr	0
5	Rb -47	Sr (~0)		Ag -125	In -29	Sn -107	Sb -101	Те -190	I -295	Xe	0
6	Cs -45	Ba (~0)		Au -282	TI -19	Pb -35	Bi -91				

© 2004 Thomson/Brooks Cole

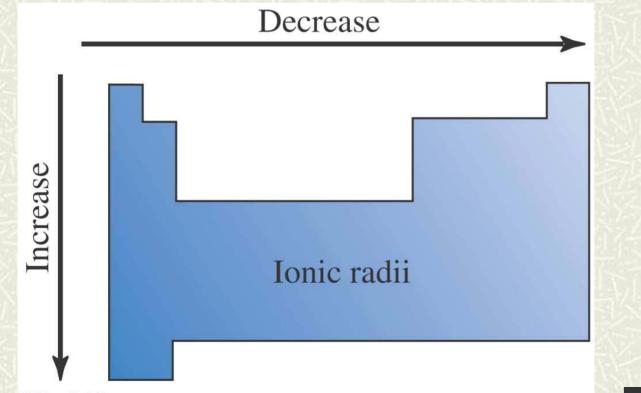
Example: Arrange these elements based on their electron affinities.

Al, Mg, Si, Na


Example: Arrange the following elements in order of increasing values of electron affinity, i.e., from most negative to least negative.

Cl, Se, S, Cs, Rb, Te

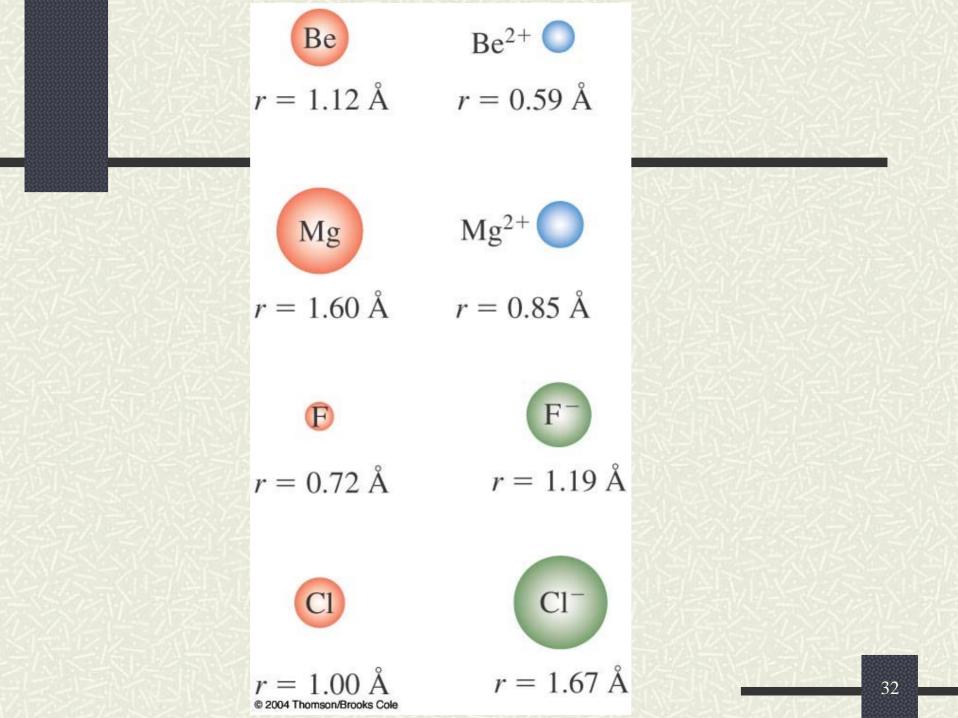
(a) Cl < S < Se < Rb < Te < Cs
(c) Cl > Se > S > Te > Rb > Cs
(e) Cl < S < Se < Te < Rb < Cs


(b) Cl > Te > Se > S > Rb > Cs
(d) Cl < S < Se < Te < Cs < Rb

Cations are always *smaller* than their respective neutral atoms.

IA	IIA	IIIA	IVA	VA	VIA	VIIA	VIIIA
Li ⁺ 0.90	Be ²⁺	Ionic rad	ii	N ³⁻	0 ²⁻ 1.26	F ⁻ 1.19	
Na ⁺ 1.16	Mg ²⁺ 0.85	Al ³⁺ 0.68		1.71	S ²⁻ 1.70	C1- 1.67	
K ⁺ 1.52	Ca^{2+} 1.14	Ga ³⁺ 0.76			Se ²⁻ 1.84	Br ⁻ 1.82	
Rb ⁺ 1.66	Sr ²⁺ 1.32	In ³⁺ 0.94			Te ²⁻ 2.07	I ⁻ 2.06	
Cs ⁺ 1.81 © 2004 Thomson/Br	Ba ²⁺ 1.49	Tl ³⁺					

♯ Anions are always *larger* than their neutral atoms.


Cations radii decrease from left to right across a period.
Increasing nuclear charge attracts the electrons and decreases the radius.

Ion	Rb+	Sr ²⁺	In ³⁺
Ionic Radii(Å)	1.66	1.32	0.94

Anions radii decrease from left to right across a period.

 Increasing electron numbers in highly charged ions cause the electrons to repel and increase the ionic radius.

Ion	N ³⁻	O ²⁻	F ¹⁻
Ionic Radii(Å)	1.71	1.26	1.19

Example: Arrange these elements based on their ionic radii.

■ Ga³⁺, K⁺, Ca²⁺

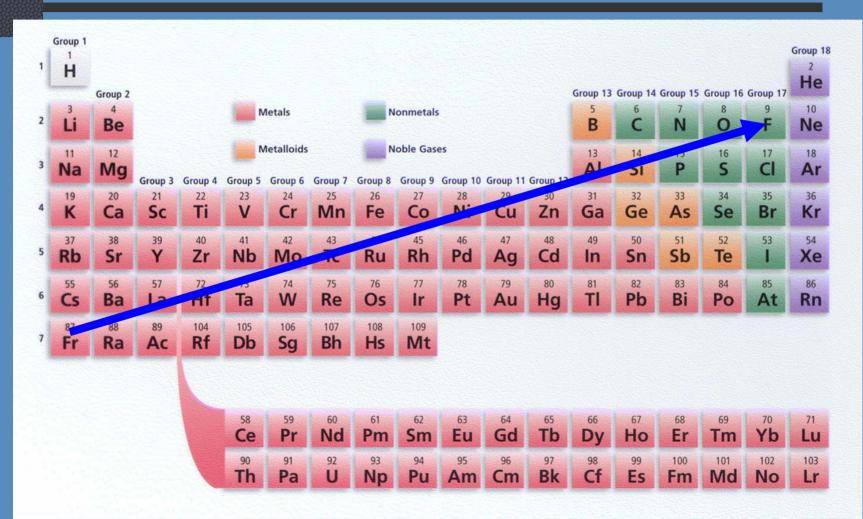
Example: Arrange these elements based on their ionic radii.

■ Cl⁻, Se²⁻, Br⁻, S²⁻

Isoelectronic ions

An isoelectronic series of ions											
	N ³⁻	O ²⁻	F-	Na ⁺	Mg ²⁺	Al ³⁺					
Ionic radius (Å)	1.71	1.26	1.19	1.16	0.85	0.68					
No. of electrons	10	10	10	10	10	10					
Nuclear charge	+7	+8	+9	+11	+12	+13					

© 2004 Thomson/Brooks Cole


Problem

1- Which of the following statements is CORRECT with regard to atomic or ionic size?

(1) $S^{2-} < Cl^{-}$ (2) $Br < Br^{-}$ (3) $Li^{-} < Li$ (4) P < N

- 2- Select the largest species from the following group: (A) Mg (B) Cl (C) S (D) Al
- **3-** Select the smallest species from the following group:
 - (A) Fe^{3+} (B) Fe^{2+} (C) Fe^{+} (D) Fe
- 4- Select the element with the lowest ionization energy (the easiest to ionize):
 - (A) Ga (B) In (C) B (D) Al

- # Electronegativity is a measure of the relative tendency of an atom to attract electrons to itself when *chemically combined with another element*.
 - Electronegativity is measured on the Pauling scale.
 - **Fluorine is the most electronegative element.**
 - Cesium and francium are the least electronegative elements.
- For the representative elements, electronegativities usually increase from left to right across periods and decrease from top to bottom within groups.

Γ	IA																	VIIIA
1	1 H 2.1	IIA		Metals Nonmetals Metalloids									IIIA	IVA	VA	VIA	VIIA	2 He
2	3 Li 1.0	4 Be 1.5				Metall							5 B 2.0	6 C 2.5	7 N 3.0	8 O 3.5	9 F 4.0	10 Ne
3	11 Na 1.0	12 Mg 1.2	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	13 Al 1.5	14 Si 1.8	15 P 2.1	16 S 2.5	17 Cl 3.0	18 Ar
4	19 K 0.9	20 Ca 1.0	21 Sc 1.3	22 Ti 1.4	23 V 1.5	24 Cr 1.6	25 Mn 1.6	26 Fe 1.7	27 Co 1.7	28 Ni 1.8	29 Cu 1.8	30 Zn 1.6	31 Ga 1.7	32 Ge 1.9	33 As 2.1	34 Se 2.4	35 Br 2.8	36 Kr

© 2004 Thomson/Brooks Cole

Example: Arrange these elements based on their electronegativity.

Se, Ge, Br, As

Example: Arrange these elements based on their electronegativity.
Be, Mg, Ca, Ba

One-line Web Learning (OWL): Chapter 6 Exercises and Tutors – Optional

End of Chapter 6

